Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem1 Structured version   Visualization version   GIF version

Theorem elrgspnlem1 33209
Description: Lemma for elrgspn 33213. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem1
Dummy variables 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
21ringgrpd 20160 . 2 (𝜑𝑅 ∈ Grp)
3 simpr 484 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
4 elrgspn.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 eqid 2731 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
61ringcmnd 20202 . . . . . . . . . . 11 (𝜑𝑅 ∈ CMnd)
76adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
84fvexi 6836 . . . . . . . . . . . . . 14 𝐵 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
10 elrgspn.a . . . . . . . . . . . . 13 (𝜑𝐴𝐵)
119, 10ssexd 5260 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
12 wrdexg 14431 . . . . . . . . . . . 12 (𝐴 ∈ V → Word 𝐴 ∈ V)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ∈ V)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
15 elrgspn.x . . . . . . . . . . . 12 · = (.g𝑅)
162ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
17 elrgspn.f . . . . . . . . . . . . . . . . 17 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
1817ssrab3 4029 . . . . . . . . . . . . . . . 16 𝐹 ⊆ (ℤ ↑m Word 𝐴)
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ (ℤ ↑m Word 𝐴))
2019sselda 3929 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
21 zex 12477 . . . . . . . . . . . . . . . . 17 ℤ ∈ V
2221a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℤ ∈ V)
2322, 13elmapd 8764 . . . . . . . . . . . . . . 15 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2423adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2520, 24mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
2625ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
27 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
2827ringmgp 20157 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
291, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
30 sswrd 14429 . . . . . . . . . . . . . . . 16 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
3110, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
3231sselda 3929 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
3327, 4mgpbas 20063 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3433gsumwcl 18747 . . . . . . . . . . . . . 14 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
3529, 32, 34syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
3635adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
374, 15, 16, 26, 36mulgcld 19009 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
3837fmpttd 7048 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
39 fvexd 6837 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
40 0zd 12480 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 0 ∈ ℤ)
41 ssidd 3953 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐴)
42 breq1 5092 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
4342, 17elrab2 3645 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
4443simprbi 496 . . . . . . . . . . . 12 (𝑔𝐹𝑔 finSupp 0)
4544adantl 481 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
464, 5, 15mulg0 18987 . . . . . . . . . . . 12 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
4746adantl 481 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
4839, 40, 14, 41, 36, 25, 45, 47fisuppov1 32664 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
494, 5, 7, 14, 38, 48gsumcl 19827 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5049ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
513, 50eqeltrd 2831 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥𝐵)
52 elrgspnlem1.1 . . . . . . . . . 10 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5352eleq2i 2823 . . . . . . . . 9 (𝑥𝑆𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
54 eqid 2731 . . . . . . . . . . 11 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5554elrnmpt 5897 . . . . . . . . . 10 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
5655elv 3441 . . . . . . . . 9 (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5753, 56sylbb 219 . . . . . . . 8 (𝑥𝑆 → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5857adantl 481 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5951, 58r19.29a 3140 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
6059, 4eleqtrdi 2841 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑅))
6160ex 412 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝑅)))
6261ssrdv 3935 . . 3 (𝜑𝑆 ⊆ (Base‘𝑅))
6362, 4sseqtrrdi 3971 . 2 (𝜑𝑆𝐵)
64 breq1 5092 . . . . . . . 8 (𝑓 = (Word 𝐴 × {0}) → (𝑓 finSupp 0 ↔ (Word 𝐴 × {0}) finSupp 0))
65 0z 12479 . . . . . . . . . . 11 0 ∈ ℤ
6665fconst6 6713 . . . . . . . . . 10 (Word 𝐴 × {0}):Word 𝐴⟶ℤ
6766a1i 11 . . . . . . . . 9 (𝜑 → (Word 𝐴 × {0}):Word 𝐴⟶ℤ)
6822, 13, 67elmapdd 8765 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) ∈ (ℤ ↑m Word 𝐴))
69 c0ex 11106 . . . . . . . . . 10 0 ∈ V
7069a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
7113, 70fczfsuppd 9270 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) finSupp 0)
7264, 68, 71elrabd 3644 . . . . . . 7 (𝜑 → (Word 𝐴 × {0}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
7372, 17eleqtrrdi 2842 . . . . . 6 (𝜑 → (Word 𝐴 × {0}) ∈ 𝐹)
74 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑔 = (Word 𝐴 × {0}))
7574fveq1d 6824 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = ((Word 𝐴 × {0})‘𝑤))
7669fconst 6709 . . . . . . . . . . . . . . 15 (Word 𝐴 × {0}):Word 𝐴⟶{0}
7776a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (Word 𝐴 × {0}):Word 𝐴⟶{0})
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
79 fvconst 7096 . . . . . . . . . . . . . 14 (((Word 𝐴 × {0}):Word 𝐴⟶{0} ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8175, 80eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = 0)
8281oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
8335adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
844, 5, 15mulg0 18987 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8583, 84syl 17 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8682, 85eqtrd 2766 . . . . . . . . . 10 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8786mpteq2dva 5182 . . . . . . . . 9 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
8887oveq2d 7362 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
896cmnmndd 19716 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
905gsumz 18744 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ Word 𝐴 ∈ V) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9189, 13, 90syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9291adantr 480 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9388, 92eqtrd 2766 . . . . . . 7 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
9493eqeq2d 2742 . . . . . 6 ((𝜑𝑔 = (Word 𝐴 × {0})) → ((0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (0g𝑅) = (0g𝑅)))
95 eqidd 2732 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑅))
9673, 94, 95rspcedvd 3574 . . . . 5 (𝜑 → ∃𝑔𝐹 (0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
97 fvexd 6837 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
9854, 96, 97elrnmptd 5902 . . . 4 (𝜑 → (0g𝑅) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
9998, 52eleqtrrdi 2842 . . 3 (𝜑 → (0g𝑅) ∈ 𝑆)
10099ne0d 4289 . 2 (𝜑𝑆 ≠ ∅)
101 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102 simpr 484 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
103101, 102oveq12d 7364 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
104 eqid 2731 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
1057adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ CMnd)
10614adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ∈ V)
10737adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
1082ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
109 breq1 5092 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑖 → (𝑓 finSupp 0 ↔ 𝑖 finSupp 0))
110109, 17elrab2 3645 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝐹 ↔ (𝑖 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 finSupp 0))
111110simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑖𝐹𝑖 ∈ (ℤ ↑m Word 𝐴))
112111adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
11322, 13elmapd 8764 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
115112, 114mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
116115ffvelcdmda 7017 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
11735adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1184, 15, 108, 116, 117mulgcld 19009 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
119118adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
120 eqidd 2732 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
121 eqidd 2732 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
12248adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
12348ralrimiva 3124 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
124 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑖 → (𝑔𝑤) = (𝑖𝑤))
125124oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑖 → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
126125mpteq2dv 5183 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
127126breq1d 5099 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑖 → ((𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅)))
128127cbvralvw 3210 . . . . . . . . . . . . . . . . 17 (∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
129123, 128sylib 218 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
130129r19.21bi 3224 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
131130adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
1324, 5, 104, 105, 106, 107, 119, 120, 121, 122, 131gsummptfsadd 19836 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
13325ffnd 6652 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐹) → 𝑔 Fn Word 𝐴)
134133adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 Fn Word 𝐴)
135115ffnd 6652 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐹) → 𝑖 Fn Word 𝐴)
136135adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 Fn Word 𝐴)
137 inidm 4174 . . . . . . . . . . . . . . . . . 18 (Word 𝐴 ∩ Word 𝐴) = Word 𝐴
138 eqidd 2732 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = (𝑔𝑤))
139 eqidd 2732 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) = (𝑖𝑤))
140134, 136, 106, 106, 137, 138, 139ofval 7621 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔f + 𝑖)‘𝑤) = ((𝑔𝑤) + (𝑖𝑤)))
141140oveq1d 7361 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)))
14216adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
14326adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
144116adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
14536adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1464, 15, 104mulgdir 19019 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑖𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
147142, 143, 144, 145, 146syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
148141, 147eqtr2d 2767 . . . . . . . . . . . . . . 15 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
149148mpteq2dva 5182 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
150149oveq2d 7362 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
151132, 150eqtr3d 2768 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
152 fveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝑤) = (𝑤))
153152oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑤) · (𝑀 Σg 𝑤)))
154153mpteq2dv 5183 . . . . . . . . . . . . . . . 16 (𝑔 = → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))
155154oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑔 = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
156155cbvmptv 5193 . . . . . . . . . . . . . 14 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
157 fveq1 6821 . . . . . . . . . . . . . . . . . . 19 ( = (𝑔f + 𝑖) → (𝑤) = ((𝑔f + 𝑖)‘𝑤))
158157oveq1d 7361 . . . . . . . . . . . . . . . . . 18 ( = (𝑔f + 𝑖) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
159158mpteq2dv 5183 . . . . . . . . . . . . . . . . 17 ( = (𝑔f + 𝑖) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
160159oveq2d 7362 . . . . . . . . . . . . . . . 16 ( = (𝑔f + 𝑖) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
161160eqeq2d 2742 . . . . . . . . . . . . . . 15 ( = (𝑔f + 𝑖) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))))
162 breq1 5092 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔f + 𝑖) → (𝑓 finSupp 0 ↔ (𝑔f + 𝑖) finSupp 0))
16321a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤ ∈ V)
164 zaddcl 12512 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
16625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔:Word 𝐴⟶ℤ)
167115adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
168165, 166, 167, 106, 106, 137off 7628 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖):Word 𝐴⟶ℤ)
169163, 106, 168elmapdd 8765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ (ℤ ↑m Word 𝐴))
170 zringring 21386 . . . . . . . . . . . . . . . . . . . . 21 ring ∈ Ring
171 ringmnd 20161 . . . . . . . . . . . . . . . . . . . . 21 (ℤring ∈ Ring → ℤring ∈ Mnd)
172170, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ring ∈ Mnd
173172a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤring ∈ Mnd)
17420adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
175111adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
17645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp 0)
177 zring0 21395 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℤring)
178176, 177breqtrdi 5130 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp (0g‘ℤring))
179110simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝐹𝑖 finSupp 0)
180179adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp 0)
181180, 177breqtrdi 5130 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp (0g‘ℤring))
182 zringbas 21390 . . . . . . . . . . . . . . . . . . . 20 ℤ = (Base‘ℤring)
183182mndpfsupp 18675 . . . . . . . . . . . . . . . . . . 19 (((ℤring ∈ Mnd ∧ Word 𝐴 ∈ V) ∧ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 ∈ (ℤ ↑m Word 𝐴)) ∧ (𝑔 finSupp (0g‘ℤring) ∧ 𝑖 finSupp (0g‘ℤring))) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
184173, 106, 174, 175, 178, 181, 183syl222anc 1388 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
185 zringplusg 21391 . . . . . . . . . . . . . . . . . . . . 21 + = (+g‘ℤring)
186185a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → + = (+g‘ℤring))
187186ofeqd 7612 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∘f + = ∘f (+g‘ℤring))
188187oveqd 7363 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) = (𝑔f (+g‘ℤring)𝑖))
189177a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 0 = (0g‘ℤring))
190184, 188, 1893brtr4d 5121 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) finSupp 0)
191162, 169, 190elrabd 3644 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
192191, 17eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ 𝐹)
193 eqidd 2732 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
194161, 192, 193rspcedvdw 3575 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
195 ovexd 7381 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ V)
196156, 194, 195elrnmptd 5902 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
197196, 52eleqtrrdi 2842 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
198151, 197eqeltrd 2831 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
199198adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
200199adantllr 719 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
201200ad4ant13 751 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
202103, 201eqeltrd 2831 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
20352eleq2i 2823 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
204126oveq2d 7362 . . . . . . . . . . . . 13 (𝑔 = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
205204cbvmptv 5193 . . . . . . . . . . . 12 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
206205elrnmpt 5897 . . . . . . . . . . 11 (𝑦 ∈ V → (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
207206elv 3441 . . . . . . . . . 10 (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
208203, 207sylbb 219 . . . . . . . . 9 (𝑦𝑆 → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
209208adantl 481 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
210209ad2antrr 726 . . . . . . 7 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
211202, 210r19.29a 3140 . . . . . 6 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
21258adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
213211, 212r19.29a 3140 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
214213ralrimiva 3124 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆)
2152ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑅 ∈ Grp)
21626znegcld 12579 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) ∈ ℤ)
2174, 15, 16, 216, 36mulgcld 19009 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
218217fmpttd 7048 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
21925adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑔:Word 𝐴⟶ℤ)
220 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
221219, 220fvco3d 6922 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)))
222 eqid 2731 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ ↦ -𝑧) = (𝑧 ∈ ℤ ↦ -𝑧)
223 negeq 11352 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑤) → -𝑧 = -(𝑔𝑤))
224222, 223, 26, 216fvmptd3 6952 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)) = -(𝑔𝑤))
225221, 224eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = -(𝑔𝑤))
226225oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤)) = (-(𝑔𝑤) · (𝑀 Σg 𝑤)))
227226mpteq2dva 5182 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
228 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
229228znegcld 12579 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → -𝑧 ∈ ℤ)
230229fmpttd 7048 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
231230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
232231, 25fcod 6676 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔):Word 𝐴⟶ℤ)
23321a1i 11 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ℤ ∈ V)
234 negeq 11352 . . . . . . . . . . . . . . 15 (𝑧 = 0 → -𝑧 = -0)
235 neg0 11407 . . . . . . . . . . . . . . 15 -0 = 0
236234, 235eqtrdi 2782 . . . . . . . . . . . . . 14 (𝑧 = 0 → -𝑧 = 0)
237 0zd 12480 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
238222, 236, 237, 237fvmptd3 6952 . . . . . . . . . . . . 13 (𝜑 → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
239238adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
24040, 25, 231, 14, 233, 45, 239fsuppco2 9287 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔) finSupp 0)
24139, 40, 14, 41, 36, 232, 240, 47fisuppov1 32664 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
242227, 241eqbrtrrd 5113 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
2434, 5, 7, 14, 218, 242gsumcl 19827 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
244243ad4ant13 751 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
2453oveq1d 7361 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
246 eqidd 2732 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
247 eqidd 2732 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
2484, 5, 104, 7, 14, 37, 217, 246, 247, 48, 242gsummptfsadd 19836 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
249248ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
25026zcnd 12578 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℂ)
251250negidd 11462 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) + -(𝑔𝑤)) = 0)
252251oveq1d 7361 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
2534, 15, 104mulgdir 19019 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ -(𝑔𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25416, 26, 216, 36, 253syl13anc 1374 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25536, 84syl 17 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
256252, 254, 2553eqtr3d 2774 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (0g𝑅))
257256mpteq2dva 5182 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
258257oveq2d 7362 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
25991adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
260258, 259eqtrd 2766 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
261260ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
262245, 249, 2613eqtr2d 2772 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
263 eqid 2731 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
2644, 104, 5, 263grpinvid1 18904 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) → (((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)))
265264biimpar 477 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) ∧ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
266215, 51, 244, 262, 265syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
267 fveq1 6821 . . . . . . . . . . . . . 14 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
268267oveq1d 7361 . . . . . . . . . . . . 13 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
269268mpteq2dv 5183 . . . . . . . . . . . 12 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
270269oveq2d 7362 . . . . . . . . . . 11 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
271270eqeq2d 2742 . . . . . . . . . 10 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))))
272 breq1 5092 . . . . . . . . . . . 12 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0))
27325ffvelcdmda 7017 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑔𝑣) ∈ ℤ)
274273znegcld 12579 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → -(𝑔𝑣) ∈ ℤ)
275274fmpttd 7048 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)):Word 𝐴⟶ℤ)
276233, 14, 275elmapdd 8765 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ (ℤ ↑m Word 𝐴))
277275ffund 6655 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → Fun (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)))
278133adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑔 Fn Word 𝐴)
27914adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → Word 𝐴 ∈ V)
280 0zd 12480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 0 ∈ ℤ)
281 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
282278, 279, 280, 281fvdifsupp 8101 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → (𝑔𝑣) = 0)
283282negeqd 11354 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = -0)
284283, 235eqtrdi 2782 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = 0)
285284, 14suppss2 8130 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) supp 0) ⊆ (𝑔 supp 0))
286276, 40, 277, 45, 285fsuppsssuppgd 9266 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0)
287272, 276, 286elrabd 3644 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
288287, 17eleqtrrdi 2842 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ 𝐹)
289 eqid 2731 . . . . . . . . . . . . . . 15 (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))
290 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
291290negeqd 11354 . . . . . . . . . . . . . . 15 (𝑣 = 𝑤 → -(𝑔𝑣) = -(𝑔𝑤))
292289, 291, 220, 216fvmptd3 6952 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) = -(𝑔𝑤))
293292eqcomd 2737 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
294293oveq1d 7361 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
295294mpteq2dva 5182 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
296295oveq2d 7362 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
297271, 288, 296rspcedvdw 3575 . . . . . . . . 9 ((𝜑𝑔𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
298156, 297, 243elrnmptd 5902 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
299298, 52eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
300299ad4ant13 751 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
301266, 300eqeltrd 2831 . . . . 5 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) ∈ 𝑆)
302301, 58r19.29a 3140 . . . 4 ((𝜑𝑥𝑆) → ((invg𝑅)‘𝑥) ∈ 𝑆)
303214, 302jca 511 . . 3 ((𝜑𝑥𝑆) → (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
304303ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
3054, 104, 263issubg2 19054 . . 3 (𝑅 ∈ Grp → (𝑆 ∈ (SubGrp‘𝑅) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))))
306305biimpar 477 . 2 ((𝑅 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝑅))
3072, 63, 100, 304, 306syl13anc 1374 1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4280  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ran crn 5615  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  m cmap 8750   finSupp cfsupp 9245  0cc0 11006   + caddc 11009  -cneg 11345  cz 12468  Word cword 14420  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  Grpcgrp 18846  invgcminusg 18847  .gcmg 18980  SubGrpcsubg 19033  CMndccmn 19692  mulGrpcmgp 20058  Ringcrg 20151  RingSpancrgspn 20525  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  elrgspnlem2  33210
  Copyright terms: Public domain W3C validator