Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem1 Structured version   Visualization version   GIF version

Theorem elrgspnlem1 33209
Description: Lemma for elrgspn 33213. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem1
Dummy variables 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
21ringgrpd 20162 . 2 (𝜑𝑅 ∈ Grp)
3 simpr 484 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
4 elrgspn.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
61ringcmnd 20204 . . . . . . . . . . 11 (𝜑𝑅 ∈ CMnd)
76adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
84fvexi 6854 . . . . . . . . . . . . . 14 𝐵 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
10 elrgspn.a . . . . . . . . . . . . 13 (𝜑𝐴𝐵)
119, 10ssexd 5274 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
12 wrdexg 14465 . . . . . . . . . . . 12 (𝐴 ∈ V → Word 𝐴 ∈ V)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ∈ V)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
15 elrgspn.x . . . . . . . . . . . 12 · = (.g𝑅)
162ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
17 elrgspn.f . . . . . . . . . . . . . . . . 17 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
1817ssrab3 4041 . . . . . . . . . . . . . . . 16 𝐹 ⊆ (ℤ ↑m Word 𝐴)
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ (ℤ ↑m Word 𝐴))
2019sselda 3943 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
21 zex 12514 . . . . . . . . . . . . . . . . 17 ℤ ∈ V
2221a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℤ ∈ V)
2322, 13elmapd 8790 . . . . . . . . . . . . . . 15 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2423adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2520, 24mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
2625ffvelcdmda 7038 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
27 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
2827ringmgp 20159 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
291, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
30 sswrd 14463 . . . . . . . . . . . . . . . 16 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
3110, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
3231sselda 3943 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
3327, 4mgpbas 20065 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3433gsumwcl 18748 . . . . . . . . . . . . . 14 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
3529, 32, 34syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
3635adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
374, 15, 16, 26, 36mulgcld 19010 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
3837fmpttd 7069 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
39 fvexd 6855 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
40 0zd 12517 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 0 ∈ ℤ)
41 ssidd 3967 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐴)
42 breq1 5105 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
4342, 17elrab2 3659 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
4443simprbi 496 . . . . . . . . . . . 12 (𝑔𝐹𝑔 finSupp 0)
4544adantl 481 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
464, 5, 15mulg0 18988 . . . . . . . . . . . 12 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
4746adantl 481 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
4839, 40, 14, 41, 36, 25, 45, 47fisuppov1 32656 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
494, 5, 7, 14, 38, 48gsumcl 19829 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5049ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
513, 50eqeltrd 2828 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥𝐵)
52 elrgspnlem1.1 . . . . . . . . . 10 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5352eleq2i 2820 . . . . . . . . 9 (𝑥𝑆𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
54 eqid 2729 . . . . . . . . . . 11 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5554elrnmpt 5911 . . . . . . . . . 10 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
5655elv 3449 . . . . . . . . 9 (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5753, 56sylbb 219 . . . . . . . 8 (𝑥𝑆 → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5857adantl 481 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5951, 58r19.29a 3141 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
6059, 4eleqtrdi 2838 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑅))
6160ex 412 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝑅)))
6261ssrdv 3949 . . 3 (𝜑𝑆 ⊆ (Base‘𝑅))
6362, 4sseqtrrdi 3985 . 2 (𝜑𝑆𝐵)
64 breq1 5105 . . . . . . . 8 (𝑓 = (Word 𝐴 × {0}) → (𝑓 finSupp 0 ↔ (Word 𝐴 × {0}) finSupp 0))
65 0z 12516 . . . . . . . . . . 11 0 ∈ ℤ
6665fconst6 6732 . . . . . . . . . 10 (Word 𝐴 × {0}):Word 𝐴⟶ℤ
6766a1i 11 . . . . . . . . 9 (𝜑 → (Word 𝐴 × {0}):Word 𝐴⟶ℤ)
6822, 13, 67elmapdd 8791 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) ∈ (ℤ ↑m Word 𝐴))
69 c0ex 11144 . . . . . . . . . 10 0 ∈ V
7069a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
7113, 70fczfsuppd 9313 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) finSupp 0)
7264, 68, 71elrabd 3658 . . . . . . 7 (𝜑 → (Word 𝐴 × {0}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
7372, 17eleqtrrdi 2839 . . . . . 6 (𝜑 → (Word 𝐴 × {0}) ∈ 𝐹)
74 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑔 = (Word 𝐴 × {0}))
7574fveq1d 6842 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = ((Word 𝐴 × {0})‘𝑤))
7669fconst 6728 . . . . . . . . . . . . . . 15 (Word 𝐴 × {0}):Word 𝐴⟶{0}
7776a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (Word 𝐴 × {0}):Word 𝐴⟶{0})
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
79 fvconst 7118 . . . . . . . . . . . . . 14 (((Word 𝐴 × {0}):Word 𝐴⟶{0} ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8175, 80eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = 0)
8281oveq1d 7384 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
8335adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
844, 5, 15mulg0 18988 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8583, 84syl 17 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8682, 85eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8786mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
8887oveq2d 7385 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
896cmnmndd 19718 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
905gsumz 18745 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ Word 𝐴 ∈ V) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9189, 13, 90syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9291adantr 480 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9388, 92eqtrd 2764 . . . . . . 7 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
9493eqeq2d 2740 . . . . . 6 ((𝜑𝑔 = (Word 𝐴 × {0})) → ((0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (0g𝑅) = (0g𝑅)))
95 eqidd 2730 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑅))
9673, 94, 95rspcedvd 3587 . . . . 5 (𝜑 → ∃𝑔𝐹 (0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
97 fvexd 6855 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
9854, 96, 97elrnmptd 5916 . . . 4 (𝜑 → (0g𝑅) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
9998, 52eleqtrrdi 2839 . . 3 (𝜑 → (0g𝑅) ∈ 𝑆)
10099ne0d 4301 . 2 (𝜑𝑆 ≠ ∅)
101 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102 simpr 484 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
103101, 102oveq12d 7387 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
104 eqid 2729 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
1057adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ CMnd)
10614adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ∈ V)
10737adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
1082ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
109 breq1 5105 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑖 → (𝑓 finSupp 0 ↔ 𝑖 finSupp 0))
110109, 17elrab2 3659 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝐹 ↔ (𝑖 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 finSupp 0))
111110simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑖𝐹𝑖 ∈ (ℤ ↑m Word 𝐴))
112111adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
11322, 13elmapd 8790 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
115112, 114mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
116115ffvelcdmda 7038 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
11735adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1184, 15, 108, 116, 117mulgcld 19010 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
119118adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
120 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
121 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
12248adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
12348ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
124 fveq1 6839 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑖 → (𝑔𝑤) = (𝑖𝑤))
125124oveq1d 7384 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑖 → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
126125mpteq2dv 5196 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
127126breq1d 5112 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑖 → ((𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅)))
128127cbvralvw 3213 . . . . . . . . . . . . . . . . 17 (∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
129123, 128sylib 218 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
130129r19.21bi 3227 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
131130adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
1324, 5, 104, 105, 106, 107, 119, 120, 121, 122, 131gsummptfsadd 19838 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
13325ffnd 6671 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐹) → 𝑔 Fn Word 𝐴)
134133adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 Fn Word 𝐴)
135115ffnd 6671 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐹) → 𝑖 Fn Word 𝐴)
136135adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 Fn Word 𝐴)
137 inidm 4186 . . . . . . . . . . . . . . . . . 18 (Word 𝐴 ∩ Word 𝐴) = Word 𝐴
138 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = (𝑔𝑤))
139 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) = (𝑖𝑤))
140134, 136, 106, 106, 137, 138, 139ofval 7644 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔f + 𝑖)‘𝑤) = ((𝑔𝑤) + (𝑖𝑤)))
141140oveq1d 7384 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)))
14216adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
14326adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
144116adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
14536adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1464, 15, 104mulgdir 19020 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑖𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
147142, 143, 144, 145, 146syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
148141, 147eqtr2d 2765 . . . . . . . . . . . . . . 15 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
149148mpteq2dva 5195 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
150149oveq2d 7385 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
151132, 150eqtr3d 2766 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
152 fveq1 6839 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝑤) = (𝑤))
153152oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑤) · (𝑀 Σg 𝑤)))
154153mpteq2dv 5196 . . . . . . . . . . . . . . . 16 (𝑔 = → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))
155154oveq2d 7385 . . . . . . . . . . . . . . 15 (𝑔 = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
156155cbvmptv 5206 . . . . . . . . . . . . . 14 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
157 fveq1 6839 . . . . . . . . . . . . . . . . . . 19 ( = (𝑔f + 𝑖) → (𝑤) = ((𝑔f + 𝑖)‘𝑤))
158157oveq1d 7384 . . . . . . . . . . . . . . . . . 18 ( = (𝑔f + 𝑖) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
159158mpteq2dv 5196 . . . . . . . . . . . . . . . . 17 ( = (𝑔f + 𝑖) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
160159oveq2d 7385 . . . . . . . . . . . . . . . 16 ( = (𝑔f + 𝑖) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
161160eqeq2d 2740 . . . . . . . . . . . . . . 15 ( = (𝑔f + 𝑖) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))))
162 breq1 5105 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔f + 𝑖) → (𝑓 finSupp 0 ↔ (𝑔f + 𝑖) finSupp 0))
16321a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤ ∈ V)
164 zaddcl 12549 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
16625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔:Word 𝐴⟶ℤ)
167115adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
168165, 166, 167, 106, 106, 137off 7651 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖):Word 𝐴⟶ℤ)
169163, 106, 168elmapdd 8791 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ (ℤ ↑m Word 𝐴))
170 zringring 21391 . . . . . . . . . . . . . . . . . . . . 21 ring ∈ Ring
171 ringmnd 20163 . . . . . . . . . . . . . . . . . . . . 21 (ℤring ∈ Ring → ℤring ∈ Mnd)
172170, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ring ∈ Mnd
173172a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤring ∈ Mnd)
17420adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
175111adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
17645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp 0)
177 zring0 21400 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℤring)
178176, 177breqtrdi 5143 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp (0g‘ℤring))
179110simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝐹𝑖 finSupp 0)
180179adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp 0)
181180, 177breqtrdi 5143 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp (0g‘ℤring))
182 zringbas 21395 . . . . . . . . . . . . . . . . . . . 20 ℤ = (Base‘ℤring)
183182mndpfsupp 18676 . . . . . . . . . . . . . . . . . . 19 (((ℤring ∈ Mnd ∧ Word 𝐴 ∈ V) ∧ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 ∈ (ℤ ↑m Word 𝐴)) ∧ (𝑔 finSupp (0g‘ℤring) ∧ 𝑖 finSupp (0g‘ℤring))) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
184173, 106, 174, 175, 178, 181, 183syl222anc 1388 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
185 zringplusg 21396 . . . . . . . . . . . . . . . . . . . . 21 + = (+g‘ℤring)
186185a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → + = (+g‘ℤring))
187186ofeqd 7635 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∘f + = ∘f (+g‘ℤring))
188187oveqd 7386 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) = (𝑔f (+g‘ℤring)𝑖))
189177a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 0 = (0g‘ℤring))
190184, 188, 1893brtr4d 5134 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) finSupp 0)
191162, 169, 190elrabd 3658 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
192191, 17eleqtrrdi 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ 𝐹)
193 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
194161, 192, 193rspcedvdw 3588 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
195 ovexd 7404 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ V)
196156, 194, 195elrnmptd 5916 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
197196, 52eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
198151, 197eqeltrd 2828 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
199198adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
200199adantllr 719 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
201200ad4ant13 751 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
202103, 201eqeltrd 2828 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
20352eleq2i 2820 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
204126oveq2d 7385 . . . . . . . . . . . . 13 (𝑔 = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
205204cbvmptv 5206 . . . . . . . . . . . 12 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
206205elrnmpt 5911 . . . . . . . . . . 11 (𝑦 ∈ V → (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
207206elv 3449 . . . . . . . . . 10 (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
208203, 207sylbb 219 . . . . . . . . 9 (𝑦𝑆 → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
209208adantl 481 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
210209ad2antrr 726 . . . . . . 7 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
211202, 210r19.29a 3141 . . . . . 6 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
21258adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
213211, 212r19.29a 3141 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
214213ralrimiva 3125 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆)
2152ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑅 ∈ Grp)
21626znegcld 12616 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) ∈ ℤ)
2174, 15, 16, 216, 36mulgcld 19010 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
218217fmpttd 7069 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
21925adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑔:Word 𝐴⟶ℤ)
220 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
221219, 220fvco3d 6943 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)))
222 eqid 2729 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ ↦ -𝑧) = (𝑧 ∈ ℤ ↦ -𝑧)
223 negeq 11389 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑤) → -𝑧 = -(𝑔𝑤))
224222, 223, 26, 216fvmptd3 6973 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)) = -(𝑔𝑤))
225221, 224eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = -(𝑔𝑤))
226225oveq1d 7384 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤)) = (-(𝑔𝑤) · (𝑀 Σg 𝑤)))
227226mpteq2dva 5195 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
228 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
229228znegcld 12616 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → -𝑧 ∈ ℤ)
230229fmpttd 7069 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
231230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
232231, 25fcod 6695 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔):Word 𝐴⟶ℤ)
23321a1i 11 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ℤ ∈ V)
234 negeq 11389 . . . . . . . . . . . . . . 15 (𝑧 = 0 → -𝑧 = -0)
235 neg0 11444 . . . . . . . . . . . . . . 15 -0 = 0
236234, 235eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑧 = 0 → -𝑧 = 0)
237 0zd 12517 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
238222, 236, 237, 237fvmptd3 6973 . . . . . . . . . . . . 13 (𝜑 → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
239238adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
24040, 25, 231, 14, 233, 45, 239fsuppco2 9330 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔) finSupp 0)
24139, 40, 14, 41, 36, 232, 240, 47fisuppov1 32656 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
242227, 241eqbrtrrd 5126 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
2434, 5, 7, 14, 218, 242gsumcl 19829 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
244243ad4ant13 751 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
2453oveq1d 7384 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
246 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
247 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
2484, 5, 104, 7, 14, 37, 217, 246, 247, 48, 242gsummptfsadd 19838 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
249248ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
25026zcnd 12615 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℂ)
251250negidd 11499 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) + -(𝑔𝑤)) = 0)
252251oveq1d 7384 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
2534, 15, 104mulgdir 19020 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ -(𝑔𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25416, 26, 216, 36, 253syl13anc 1374 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25536, 84syl 17 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
256252, 254, 2553eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (0g𝑅))
257256mpteq2dva 5195 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
258257oveq2d 7385 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
25991adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
260258, 259eqtrd 2764 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
261260ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
262245, 249, 2613eqtr2d 2770 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
263 eqid 2729 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
2644, 104, 5, 263grpinvid1 18905 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) → (((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)))
265264biimpar 477 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) ∧ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
266215, 51, 244, 262, 265syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
267 fveq1 6839 . . . . . . . . . . . . . 14 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
268267oveq1d 7384 . . . . . . . . . . . . 13 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
269268mpteq2dv 5196 . . . . . . . . . . . 12 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
270269oveq2d 7385 . . . . . . . . . . 11 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
271270eqeq2d 2740 . . . . . . . . . 10 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))))
272 breq1 5105 . . . . . . . . . . . 12 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0))
27325ffvelcdmda 7038 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑔𝑣) ∈ ℤ)
274273znegcld 12616 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → -(𝑔𝑣) ∈ ℤ)
275274fmpttd 7069 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)):Word 𝐴⟶ℤ)
276233, 14, 275elmapdd 8791 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ (ℤ ↑m Word 𝐴))
277275ffund 6674 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → Fun (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)))
278133adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑔 Fn Word 𝐴)
27914adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → Word 𝐴 ∈ V)
280 0zd 12517 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 0 ∈ ℤ)
281 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
282278, 279, 280, 281fvdifsupp 8127 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → (𝑔𝑣) = 0)
283282negeqd 11391 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = -0)
284283, 235eqtrdi 2780 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = 0)
285284, 14suppss2 8156 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) supp 0) ⊆ (𝑔 supp 0))
286276, 40, 277, 45, 285fsuppsssuppgd 9309 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0)
287272, 276, 286elrabd 3658 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
288287, 17eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ 𝐹)
289 eqid 2729 . . . . . . . . . . . . . . 15 (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))
290 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
291290negeqd 11391 . . . . . . . . . . . . . . 15 (𝑣 = 𝑤 → -(𝑔𝑣) = -(𝑔𝑤))
292289, 291, 220, 216fvmptd3 6973 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) = -(𝑔𝑤))
293292eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
294293oveq1d 7384 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
295294mpteq2dva 5195 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
296295oveq2d 7385 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
297271, 288, 296rspcedvdw 3588 . . . . . . . . 9 ((𝜑𝑔𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
298156, 297, 243elrnmptd 5916 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
299298, 52eleqtrrdi 2839 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
300299ad4ant13 751 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
301266, 300eqeltrd 2828 . . . . 5 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) ∈ 𝑆)
302301, 58r19.29a 3141 . . . 4 ((𝜑𝑥𝑆) → ((invg𝑅)‘𝑥) ∈ 𝑆)
303214, 302jca 511 . . 3 ((𝜑𝑥𝑆) → (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
304303ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
3054, 104, 263issubg2 19055 . . 3 (𝑅 ∈ Grp → (𝑆 ∈ (SubGrp‘𝑅) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))))
306305biimpar 477 . 2 ((𝑅 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝑅))
3072, 63, 100, 304, 306syl13anc 1374 1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  ran crn 5632  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631   supp csupp 8116  m cmap 8776   finSupp cfsupp 9288  0cc0 11044   + caddc 11047  -cneg 11382  cz 12505  Word cword 14454  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18643  Grpcgrp 18847  invgcminusg 18848  .gcmg 18981  SubGrpcsubg 19034  CMndccmn 19694  mulGrpcmgp 20060  Ringcrg 20153  RingSpancrgspn 20530  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-gsum 17381  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-mulg 18982  df-subg 19037  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  elrgspnlem2  33210
  Copyright terms: Public domain W3C validator