Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem1 Structured version   Visualization version   GIF version

Theorem elrgspnlem1 33183
Description: Lemma for elrgspn 33187. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem1
Dummy variables 𝑖 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
21ringgrpd 20127 . 2 (𝜑𝑅 ∈ Grp)
3 simpr 484 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
4 elrgspn.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
61ringcmnd 20169 . . . . . . . . . . 11 (𝜑𝑅 ∈ CMnd)
76adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → 𝑅 ∈ CMnd)
84fvexi 6836 . . . . . . . . . . . . . 14 𝐵 ∈ V
98a1i 11 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
10 elrgspn.a . . . . . . . . . . . . 13 (𝜑𝐴𝐵)
119, 10ssexd 5263 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
12 wrdexg 14431 . . . . . . . . . . . 12 (𝐴 ∈ V → Word 𝐴 ∈ V)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 → Word 𝐴 ∈ V)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
15 elrgspn.x . . . . . . . . . . . 12 · = (.g𝑅)
162ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
17 elrgspn.f . . . . . . . . . . . . . . . . 17 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
1817ssrab3 4033 . . . . . . . . . . . . . . . 16 𝐹 ⊆ (ℤ ↑m Word 𝐴)
1918a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⊆ (ℤ ↑m Word 𝐴))
2019sselda 3935 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
21 zex 12480 . . . . . . . . . . . . . . . . 17 ℤ ∈ V
2221a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℤ ∈ V)
2322, 13elmapd 8767 . . . . . . . . . . . . . . 15 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2423adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐹) → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
2520, 24mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
2625ffvelcdmda 7018 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
27 elrgspn.m . . . . . . . . . . . . . . . 16 𝑀 = (mulGrp‘𝑅)
2827ringmgp 20124 . . . . . . . . . . . . . . 15 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
291, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Mnd)
30 sswrd 14429 . . . . . . . . . . . . . . . 16 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
3110, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
3231sselda 3935 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
3327, 4mgpbas 20030 . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑀)
3433gsumwcl 18713 . . . . . . . . . . . . . 14 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
3529, 32, 34syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
3635adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
374, 15, 16, 26, 36mulgcld 18975 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
3837fmpttd 7049 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
39 fvexd 6837 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
40 0zd 12483 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 0 ∈ ℤ)
41 ssidd 3959 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐴)
42 breq1 5095 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
4342, 17elrab2 3651 . . . . . . . . . . . . 13 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
4443simprbi 496 . . . . . . . . . . . 12 (𝑔𝐹𝑔 finSupp 0)
4544adantl 481 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
464, 5, 15mulg0 18953 . . . . . . . . . . . 12 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
4746adantl 481 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
4839, 40, 14, 41, 36, 25, 45, 47fisuppov1 32626 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
494, 5, 7, 14, 38, 48gsumcl 19794 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
5049ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
513, 50eqeltrd 2828 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑥𝐵)
52 elrgspnlem1.1 . . . . . . . . . 10 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5352eleq2i 2820 . . . . . . . . 9 (𝑥𝑆𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
54 eqid 2729 . . . . . . . . . . 11 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5554elrnmpt 5900 . . . . . . . . . 10 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
5655elv 3441 . . . . . . . . 9 (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5753, 56sylbb 219 . . . . . . . 8 (𝑥𝑆 → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5857adantl 481 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
5951, 58r19.29a 3137 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
6059, 4eleqtrdi 2838 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑅))
6160ex 412 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝑅)))
6261ssrdv 3941 . . 3 (𝜑𝑆 ⊆ (Base‘𝑅))
6362, 4sseqtrrdi 3977 . 2 (𝜑𝑆𝐵)
64 breq1 5095 . . . . . . . 8 (𝑓 = (Word 𝐴 × {0}) → (𝑓 finSupp 0 ↔ (Word 𝐴 × {0}) finSupp 0))
65 0z 12482 . . . . . . . . . . 11 0 ∈ ℤ
6665fconst6 6714 . . . . . . . . . 10 (Word 𝐴 × {0}):Word 𝐴⟶ℤ
6766a1i 11 . . . . . . . . 9 (𝜑 → (Word 𝐴 × {0}):Word 𝐴⟶ℤ)
6822, 13, 67elmapdd 8768 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) ∈ (ℤ ↑m Word 𝐴))
69 c0ex 11109 . . . . . . . . . 10 0 ∈ V
7069a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ V)
7113, 70fczfsuppd 9276 . . . . . . . 8 (𝜑 → (Word 𝐴 × {0}) finSupp 0)
7264, 68, 71elrabd 3650 . . . . . . 7 (𝜑 → (Word 𝐴 × {0}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
7372, 17eleqtrrdi 2839 . . . . . 6 (𝜑 → (Word 𝐴 × {0}) ∈ 𝐹)
74 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑔 = (Word 𝐴 × {0}))
7574fveq1d 6824 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = ((Word 𝐴 × {0})‘𝑤))
7669fconst 6710 . . . . . . . . . . . . . . 15 (Word 𝐴 × {0}):Word 𝐴⟶{0}
7776a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (Word 𝐴 × {0}):Word 𝐴⟶{0})
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
79 fvconst 7098 . . . . . . . . . . . . . 14 (((Word 𝐴 × {0}):Word 𝐴⟶{0} ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((Word 𝐴 × {0})‘𝑤) = 0)
8175, 80eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = 0)
8281oveq1d 7364 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
8335adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
844, 5, 15mulg0 18953 . . . . . . . . . . . 12 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8583, 84syl 17 . . . . . . . . . . 11 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8682, 85eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑔 = (Word 𝐴 × {0})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
8786mpteq2dva 5185 . . . . . . . . 9 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
8887oveq2d 7365 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
896cmnmndd 19683 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
905gsumz 18710 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ Word 𝐴 ∈ V) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9189, 13, 90syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9291adantr 480 . . . . . . . 8 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
9388, 92eqtrd 2764 . . . . . . 7 ((𝜑𝑔 = (Word 𝐴 × {0})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
9493eqeq2d 2740 . . . . . 6 ((𝜑𝑔 = (Word 𝐴 × {0})) → ((0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (0g𝑅) = (0g𝑅)))
95 eqidd 2730 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑅))
9673, 94, 95rspcedvd 3579 . . . . 5 (𝜑 → ∃𝑔𝐹 (0g𝑅) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
97 fvexd 6837 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
9854, 96, 97elrnmptd 5905 . . . 4 (𝜑 → (0g𝑅) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
9998, 52eleqtrrdi 2839 . . 3 (𝜑 → (0g𝑅) ∈ 𝑆)
10099ne0d 4293 . 2 (𝜑𝑆 ≠ ∅)
101 simpllr 775 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
102 simpr 484 . . . . . . . . 9 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
103101, 102oveq12d 7367 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
104 eqid 2729 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
1057adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ CMnd)
10614adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ∈ V)
10737adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
1082ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
109 breq1 5095 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑖 → (𝑓 finSupp 0 ↔ 𝑖 finSupp 0))
110109, 17elrab2 3651 . . . . . . . . . . . . . . . . . . . 20 (𝑖𝐹 ↔ (𝑖 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 finSupp 0))
111110simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑖𝐹𝑖 ∈ (ℤ ↑m Word 𝐴))
112111adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
11322, 13elmapd 8767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
114113adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐹) → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
115112, 114mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
116115ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
11735adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1184, 15, 108, 116, 117mulgcld 18975 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
119118adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
120 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
121 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
12248adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
12348ralrimiva 3121 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
124 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑖 → (𝑔𝑤) = (𝑖𝑤))
125124oveq1d 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑖 → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
126125mpteq2dv 5186 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
127126breq1d 5102 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑖 → ((𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅)))
128127cbvralvw 3207 . . . . . . . . . . . . . . . . 17 (∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
129123, 128sylib 218 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
130129r19.21bi 3221 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
131130adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
1324, 5, 104, 105, 106, 107, 119, 120, 121, 122, 131gsummptfsadd 19803 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
13325ffnd 6653 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐹) → 𝑔 Fn Word 𝐴)
134133adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 Fn Word 𝐴)
135115ffnd 6653 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐹) → 𝑖 Fn Word 𝐴)
136135adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 Fn Word 𝐴)
137 inidm 4178 . . . . . . . . . . . . . . . . . 18 (Word 𝐴 ∩ Word 𝐴) = Word 𝐴
138 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) = (𝑔𝑤))
139 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) = (𝑖𝑤))
140134, 136, 106, 106, 137, 138, 139ofval 7624 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔f + 𝑖)‘𝑤) = ((𝑔𝑤) + (𝑖𝑤)))
141140oveq1d 7364 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)))
14216adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
14326adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
144116adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
14536adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1464, 15, 104mulgdir 18985 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑖𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
147142, 143, 144, 145, 146syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + (𝑖𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))
148141, 147eqtr2d 2765 . . . . . . . . . . . . . . 15 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
149148mpteq2dva 5185 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
150149oveq2d 7365 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
151132, 150eqtr3d 2766 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
152 fveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝑤) = (𝑤))
153152oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑤) · (𝑀 Σg 𝑤)))
154153mpteq2dv 5186 . . . . . . . . . . . . . . . 16 (𝑔 = → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))
155154oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑔 = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
156155cbvmptv 5196 . . . . . . . . . . . . . 14 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
157 fveq1 6821 . . . . . . . . . . . . . . . . . . 19 ( = (𝑔f + 𝑖) → (𝑤) = ((𝑔f + 𝑖)‘𝑤))
158157oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ( = (𝑔f + 𝑖) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))
159158mpteq2dv 5186 . . . . . . . . . . . . . . . . 17 ( = (𝑔f + 𝑖) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))
160159oveq2d 7365 . . . . . . . . . . . . . . . 16 ( = (𝑔f + 𝑖) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
161160eqeq2d 2740 . . . . . . . . . . . . . . 15 ( = (𝑔f + 𝑖) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤))))))
162 breq1 5095 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑔f + 𝑖) → (𝑓 finSupp 0 ↔ (𝑔f + 𝑖) finSupp 0))
16321a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤ ∈ V)
164 zaddcl 12515 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ)
165164adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ)
16625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔:Word 𝐴⟶ℤ)
167115adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
168165, 166, 167, 106, 106, 137off 7631 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖):Word 𝐴⟶ℤ)
169163, 106, 168elmapdd 8768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ (ℤ ↑m Word 𝐴))
170 zringring 21356 . . . . . . . . . . . . . . . . . . . . 21 ring ∈ Ring
171 ringmnd 20128 . . . . . . . . . . . . . . . . . . . . 21 (ℤring ∈ Ring → ℤring ∈ Mnd)
172170, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ring ∈ Mnd
173172a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤring ∈ Mnd)
17420adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
175111adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
17645adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp 0)
177 zring0 21365 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℤring)
178176, 177breqtrdi 5133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 finSupp (0g‘ℤring))
179110simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝐹𝑖 finSupp 0)
180179adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp 0)
181180, 177breqtrdi 5133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp (0g‘ℤring))
182 zringbas 21360 . . . . . . . . . . . . . . . . . . . 20 ℤ = (Base‘ℤring)
183182mndpfsupp 18641 . . . . . . . . . . . . . . . . . . 19 (((ℤring ∈ Mnd ∧ Word 𝐴 ∈ V) ∧ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 ∈ (ℤ ↑m Word 𝐴)) ∧ (𝑔 finSupp (0g‘ℤring) ∧ 𝑖 finSupp (0g‘ℤring))) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
184173, 106, 174, 175, 178, 181, 183syl222anc 1388 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f (+g‘ℤring)𝑖) finSupp (0g‘ℤring))
185 zringplusg 21361 . . . . . . . . . . . . . . . . . . . . 21 + = (+g‘ℤring)
186185a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → + = (+g‘ℤring))
187186ofeqd 7615 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∘f + = ∘f (+g‘ℤring))
188187oveqd 7366 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) = (𝑔f (+g‘ℤring)𝑖))
189177a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 0 = (0g‘ℤring))
190184, 188, 1893brtr4d 5124 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) finSupp 0)
191162, 169, 190elrabd 3650 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
192191, 17eleqtrrdi 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑔f + 𝑖) ∈ 𝐹)
193 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))))
194161, 192, 193rspcedvdw 3580 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
195 ovexd 7384 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ V)
196156, 194, 195elrnmptd 5905 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
197196, 52eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔f + 𝑖)‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
198151, 197eqeltrd 2828 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
199198adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
200199adantllr 719 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
201200ad4ant13 751 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
202103, 201eqeltrd 2828 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
20352eleq2i 2820 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
204126oveq2d 7365 . . . . . . . . . . . . 13 (𝑔 = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
205204cbvmptv 5196 . . . . . . . . . . . 12 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
206205elrnmpt 5900 . . . . . . . . . . 11 (𝑦 ∈ V → (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
207206elv 3441 . . . . . . . . . 10 (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
208203, 207sylbb 219 . . . . . . . . 9 (𝑦𝑆 → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
209208adantl 481 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
210209ad2antrr 726 . . . . . . 7 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
211202, 210r19.29a 3137 . . . . . 6 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
21258adantr 480 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
213211, 212r19.29a 3137 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑅)𝑦) ∈ 𝑆)
214213ralrimiva 3121 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆)
2152ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑅 ∈ Grp)
21626znegcld 12582 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) ∈ ℤ)
2174, 15, 16, 216, 36mulgcld 18975 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
218217fmpttd 7049 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))):Word 𝐴𝐵)
21925adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑔:Word 𝐴⟶ℤ)
220 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
221219, 220fvco3d 6923 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)))
222 eqid 2729 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ ↦ -𝑧) = (𝑧 ∈ ℤ ↦ -𝑧)
223 negeq 11355 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑤) → -𝑧 = -(𝑔𝑤))
224222, 223, 26, 216fvmptd3 6953 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑧 ∈ ℤ ↦ -𝑧)‘(𝑔𝑤)) = -(𝑔𝑤))
225221, 224eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) = -(𝑔𝑤))
226225oveq1d 7364 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤)) = (-(𝑔𝑤) · (𝑀 Σg 𝑤)))
227226mpteq2dva 5185 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
228 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
229228znegcld 12582 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℤ) → -𝑧 ∈ ℤ)
230229fmpttd 7049 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
231230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑧 ∈ ℤ ↦ -𝑧):ℤ⟶ℤ)
232231, 25fcod 6677 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔):Word 𝐴⟶ℤ)
23321a1i 11 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ℤ ∈ V)
234 negeq 11355 . . . . . . . . . . . . . . 15 (𝑧 = 0 → -𝑧 = -0)
235 neg0 11410 . . . . . . . . . . . . . . 15 -0 = 0
236234, 235eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑧 = 0 → -𝑧 = 0)
237 0zd 12483 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
238222, 236, 237, 237fvmptd3 6953 . . . . . . . . . . . . 13 (𝜑 → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
239238adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧)‘0) = 0)
24040, 25, 231, 14, 233, 45, 239fsuppco2 9293 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → ((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔) finSupp 0)
24139, 40, 14, 41, 36, 232, 240, 47fisuppov1 32626 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((((𝑧 ∈ ℤ ↦ -𝑧) ∘ 𝑔)‘𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
242227, 241eqbrtrrd 5116 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
2434, 5, 7, 14, 218, 242gsumcl 19794 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
244243ad4ant13 751 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵)
2453oveq1d 7364 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
246 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
247 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))
2484, 5, 104, 7, 14, 37, 217, 246, 247, 48, 242gsummptfsadd 19803 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
249248ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))))
25026zcnd 12581 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℂ)
251250negidd 11465 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) + -(𝑔𝑤)) = 0)
252251oveq1d 7364 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
2534, 15, 104mulgdir 18985 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ -(𝑔𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵)) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25416, 26, 216, 36, 253syl13anc 1374 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) + -(𝑔𝑤)) · (𝑀 Σg 𝑤)) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))
25536, 84syl 17 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
256252, 254, 2553eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (0g𝑅))
257256mpteq2dva 5185 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑤 ∈ Word 𝐴 ↦ (0g𝑅)))
258257oveq2d 7365 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))))
25991adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (0g𝑅))) = (0g𝑅))
260258, 259eqtrd 2764 . . . . . . . . 9 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
261260ad4ant13 751 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(+g𝑅)(-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
262245, 249, 2613eqtr2d 2770 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅))
263 eqid 2729 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
2644, 104, 5, 263grpinvid1 18870 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) → (((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)))
265264biimpar 477 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝑥𝐵 ∧ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝐵) ∧ (𝑥(+g𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))))) = (0g𝑅)) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
266215, 51, 244, 262, 265syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))))
267 fveq1 6821 . . . . . . . . . . . . . 14 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
268267oveq1d 7364 . . . . . . . . . . . . 13 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
269268mpteq2dv 5186 . . . . . . . . . . . 12 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
270269oveq2d 7365 . . . . . . . . . . 11 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
271270eqeq2d 2740 . . . . . . . . . 10 ( = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))))
272 breq1 5095 . . . . . . . . . . . 12 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0))
27325ffvelcdmda 7018 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑔𝑣) ∈ ℤ)
274273znegcld 12582 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ Word 𝐴) → -(𝑔𝑣) ∈ ℤ)
275274fmpttd 7049 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)):Word 𝐴⟶ℤ)
276233, 14, 275elmapdd 8768 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ (ℤ ↑m Word 𝐴))
277275ffund 6656 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → Fun (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)))
278133adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑔 Fn Word 𝐴)
27914adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → Word 𝐴 ∈ V)
280 0zd 12483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 0 ∈ ℤ)
281 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
282278, 279, 280, 281fvdifsupp 8104 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → (𝑔𝑣) = 0)
283282negeqd 11357 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = -0)
284283, 235eqtrdi 2780 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑣 ∈ (Word 𝐴 ∖ (𝑔 supp 0))) → -(𝑔𝑣) = 0)
285284, 14suppss2 8133 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) supp 0) ⊆ (𝑔 supp 0))
286276, 40, 277, 45, 285fsuppsssuppgd 9272 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) finSupp 0)
287272, 276, 286elrabd 3650 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
288287, 17eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) ∈ 𝐹)
289 eqid 2729 . . . . . . . . . . . . . . 15 (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣)) = (𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))
290 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑔𝑣) = (𝑔𝑤))
291290negeqd 11357 . . . . . . . . . . . . . . 15 (𝑣 = 𝑤 → -(𝑔𝑣) = -(𝑔𝑤))
292289, 291, 220, 216fvmptd3 6953 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) = -(𝑔𝑤))
293292eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → -(𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤))
294293oveq1d 7364 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (-(𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))
295294mpteq2dva 5185 . . . . . . . . . . 11 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤))))
296295oveq2d 7365 . . . . . . . . . 10 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ -(𝑔𝑣))‘𝑤) · (𝑀 Σg 𝑤)))))
297271, 288, 296rspcedvdw 3580 . . . . . . . . 9 ((𝜑𝑔𝐹) → ∃𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
298156, 297, 243elrnmptd 5905 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
299298, 52eleqtrrdi 2839 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
300299ad4ant13 751 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (-(𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
301266, 300eqeltrd 2828 . . . . 5 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ((invg𝑅)‘𝑥) ∈ 𝑆)
302301, 58r19.29a 3137 . . . 4 ((𝜑𝑥𝑆) → ((invg𝑅)‘𝑥) ∈ 𝑆)
303214, 302jca 511 . . 3 ((𝜑𝑥𝑆) → (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
304303ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))
3054, 104, 263issubg2 19020 . . 3 (𝑅 ∈ Grp → (𝑆 ∈ (SubGrp‘𝑅) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))))
306305biimpar 477 . 2 ((𝑅 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝑅)𝑦) ∈ 𝑆 ∧ ((invg𝑅)‘𝑥) ∈ 𝑆))) → 𝑆 ∈ (SubGrp‘𝑅))
3072, 63, 100, 304, 306syl13anc 1374 1 (𝜑𝑆 ∈ (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611   supp csupp 8093  m cmap 8753   finSupp cfsupp 9251  0cc0 11009   + caddc 11012  -cneg 11348  cz 12471  Word cword 14420  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Grpcgrp 18812  invgcminusg 18813  .gcmg 18946  SubGrpcsubg 18999  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  RingSpancrgspn 20495  ringczring 21353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-word 14421  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-cnfld 21262  df-zring 21354
This theorem is referenced by:  elrgspnlem2  33184
  Copyright terms: Public domain W3C validator