MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof Structured version   Visualization version   GIF version

Theorem seqof 14110
Description: Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
seqof.1 (𝜑𝐴𝑉)
seqof.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof.3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
Assertion
Ref Expression
seqof (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝐹,𝑧   𝑥,𝐺   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝑥, + ,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝐺(𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem seqof
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof.2 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fvex 6933 . . . . . . . . 9 (𝐺𝑥) ∈ V
32rgenw 3071 . . . . . . . 8 𝑧𝐴 (𝐺𝑥) ∈ V
4 eqid 2740 . . . . . . . . 9 (𝑧𝐴 ↦ (𝐺𝑥)) = (𝑧𝐴 ↦ (𝐺𝑥))
54fnmpt 6720 . . . . . . . 8 (∀𝑧𝐴 (𝐺𝑥) ∈ V → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
63, 5mp1i 13 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴)
7 seqof.3 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
87fneq1d 6672 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥) Fn 𝐴 ↔ (𝑧𝐴 ↦ (𝐺𝑥)) Fn 𝐴))
96, 8mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) Fn 𝐴)
10 fvex 6933 . . . . . . 7 (𝐹𝑥) ∈ V
11 fneq1 6670 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑧 Fn 𝐴 ↔ (𝐹𝑥) Fn 𝐴))
1210, 11elab 3694 . . . . . 6 ((𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝐹𝑥) Fn 𝐴)
139, 12sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
14 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑥 Fn 𝐴)
15 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝑦 Fn 𝐴)
16 seqof.1 . . . . . . . . . 10 (𝜑𝐴𝑉)
1716adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → 𝐴𝑉)
18 inidm 4248 . . . . . . . . 9 (𝐴𝐴) = 𝐴
1914, 15, 17, 17, 18offn 7727 . . . . . . . 8 ((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → (𝑥f + 𝑦) Fn 𝐴)
2019ex 412 . . . . . . 7 (𝜑 → ((𝑥 Fn 𝐴𝑦 Fn 𝐴) → (𝑥f + 𝑦) Fn 𝐴))
21 vex 3492 . . . . . . . . 9 𝑥 ∈ V
22 fneq1 6670 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 Fn 𝐴𝑥 Fn 𝐴))
2321, 22elab 3694 . . . . . . . 8 (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑥 Fn 𝐴)
24 vex 3492 . . . . . . . . 9 𝑦 ∈ V
25 fneq1 6670 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 Fn 𝐴𝑦 Fn 𝐴))
2624, 25elab 3694 . . . . . . . 8 (𝑦 ∈ {𝑧𝑧 Fn 𝐴} ↔ 𝑦 Fn 𝐴)
2723, 26anbi12i 627 . . . . . . 7 ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) ↔ (𝑥 Fn 𝐴𝑦 Fn 𝐴))
28 ovex 7481 . . . . . . . 8 (𝑥f + 𝑦) ∈ V
29 fneq1 6670 . . . . . . . 8 (𝑧 = (𝑥f + 𝑦) → (𝑧 Fn 𝐴 ↔ (𝑥f + 𝑦) Fn 𝐴))
3028, 29elab 3694 . . . . . . 7 ((𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴} ↔ (𝑥f + 𝑦) Fn 𝐴)
3120, 27, 303imtr4g 296 . . . . . 6 (𝜑 → ((𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴}) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴}))
3231imp 406 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
331, 13, 32seqcl 14073 . . . 4 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴})
34 fvex 6933 . . . . 5 (seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ V
35 fneq1 6670 . . . . 5 (𝑧 = (seq𝑀( ∘f + , 𝐹)‘𝑁) → (𝑧 Fn 𝐴 ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴))
3634, 35elab 3694 . . . 4 ((seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ {𝑧𝑧 Fn 𝐴} ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴)
3733, 36sylib 218 . . 3 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴)
38 dffn5 6980 . . 3 ((seq𝑀( ∘f + , 𝐹)‘𝑁) Fn 𝐴 ↔ (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)))
3937, 38sylib 218 . 2 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)))
40 fveq1 6919 . . . . . 6 (𝑤 = (seq𝑀( ∘f + , 𝐹)‘𝑁) → (𝑤𝑧) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
41 eqid 2740 . . . . . 6 (𝑤 ∈ V ↦ (𝑤𝑧)) = (𝑤 ∈ V ↦ (𝑤𝑧))
42 fvex 6933 . . . . . 6 ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧) ∈ V
4340, 41, 42fvmpt 7029 . . . . 5 ((seq𝑀( ∘f + , 𝐹)‘𝑁) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
4434, 43mp1i 13 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧))
4532adantlr 714 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → (𝑥f + 𝑦) ∈ {𝑧𝑧 Fn 𝐴})
4613adantlr 714 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ {𝑧𝑧 Fn 𝐴})
471adantr 480 . . . . 5 ((𝜑𝑧𝐴) → 𝑁 ∈ (ℤ𝑀))
48 eqidd 2741 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑥𝑧) = (𝑥𝑧))
49 eqidd 2741 . . . . . . . . 9 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → (𝑦𝑧) = (𝑦𝑧))
5014, 15, 17, 17, 18, 48, 49ofval 7725 . . . . . . . 8 (((𝜑 ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) ∧ 𝑧𝐴) → ((𝑥f + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
5150an32s 651 . . . . . . 7 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑥f + 𝑦)‘𝑧) = ((𝑥𝑧) + (𝑦𝑧)))
52 fveq1 6919 . . . . . . . . 9 (𝑤 = (𝑥f + 𝑦) → (𝑤𝑧) = ((𝑥f + 𝑦)‘𝑧))
53 fvex 6933 . . . . . . . . 9 ((𝑥f + 𝑦)‘𝑧) ∈ V
5452, 41, 53fvmpt 7029 . . . . . . . 8 ((𝑥f + 𝑦) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = ((𝑥f + 𝑦)‘𝑧))
5528, 54ax-mp 5 . . . . . . 7 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = ((𝑥f + 𝑦)‘𝑧)
56 fveq1 6919 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑧) = (𝑥𝑧))
57 fvex 6933 . . . . . . . . . 10 (𝑥𝑧) ∈ V
5856, 41, 57fvmpt 7029 . . . . . . . . 9 (𝑥 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧))
5958elv 3493 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) = (𝑥𝑧)
60 fveq1 6919 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤𝑧) = (𝑦𝑧))
61 fvex 6933 . . . . . . . . . 10 (𝑦𝑧) ∈ V
6260, 41, 61fvmpt 7029 . . . . . . . . 9 (𝑦 ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧))
6362elv 3493 . . . . . . . 8 ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦) = (𝑦𝑧)
6459, 63oveq12i 7460 . . . . . . 7 (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)) = ((𝑥𝑧) + (𝑦𝑧))
6551, 55, 643eqtr4g 2805 . . . . . 6 (((𝜑𝑧𝐴) ∧ (𝑥 Fn 𝐴𝑦 Fn 𝐴)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
6627, 65sylan2b 593 . . . . 5 (((𝜑𝑧𝐴) ∧ (𝑥 ∈ {𝑧𝑧 Fn 𝐴} ∧ 𝑦 ∈ {𝑧𝑧 Fn 𝐴})) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝑥f + 𝑦)) = (((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑥) + ((𝑤 ∈ V ↦ (𝑤𝑧))‘𝑦)))
67 fveq1 6919 . . . . . . . 8 (𝑤 = (𝐹𝑥) → (𝑤𝑧) = ((𝐹𝑥)‘𝑧))
68 fvex 6933 . . . . . . . 8 ((𝐹𝑥)‘𝑧) ∈ V
6967, 41, 68fvmpt 7029 . . . . . . 7 ((𝐹𝑥) ∈ V → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧))
7010, 69ax-mp 5 . . . . . 6 ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = ((𝐹𝑥)‘𝑧)
717adantlr 714 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = (𝑧𝐴 ↦ (𝐺𝑥)))
7271fveq1d 6922 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧))
73 simplr 768 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑧𝐴)
744fvmpt2 7040 . . . . . . . 8 ((𝑧𝐴 ∧ (𝐺𝑥) ∈ V) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7573, 2, 74sylancl 585 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑧𝐴 ↦ (𝐺𝑥))‘𝑧) = (𝐺𝑥))
7672, 75eqtrd 2780 . . . . . 6 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝐹𝑥)‘𝑧) = (𝐺𝑥))
7770, 76eqtrid 2792 . . . . 5 (((𝜑𝑧𝐴) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(𝐹𝑥)) = (𝐺𝑥))
7845, 46, 47, 66, 77seqhomo 14100 . . . 4 ((𝜑𝑧𝐴) → ((𝑤 ∈ V ↦ (𝑤𝑧))‘(seq𝑀( ∘f + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐺)‘𝑁))
7944, 78eqtr3d 2782 . . 3 ((𝜑𝑧𝐴) → ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁))
8079mpteq2dva 5266 . 2 (𝜑 → (𝑧𝐴 ↦ ((seq𝑀( ∘f + , 𝐹)‘𝑁)‘𝑧)) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
8139, 80eqtrd 2780 1 (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488  cmpt 5249   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712  cuz 12903  ...cfz 13567  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053
This theorem is referenced by:  seqof2  14111  mtest  26465  pserulm  26483  knoppcnlem7  36465
  Copyright terms: Public domain W3C validator