![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iocssre | Structured version Visualization version GIF version |
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
iocssre | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioc2 13391 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
2 | 1 | biimp3a 1467 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)) |
3 | 2 | simp1d 1140 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1119 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3987 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ⊆ wss 3947 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 (,]cioc 13329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioc 13333 |
This theorem is referenced by: iocmnfcld 24505 lhop1 25766 negpitopissre 26285 eff1o 26294 dvlog2lem 26396 iocopn 44531 limcicciooub 44651 limcresiooub 44656 fourierdlem19 45140 fourierdlem33 45154 fourierdlem37 45158 fourierdlem46 45166 fourierdlem48 45168 fourierdlem49 45169 fourierdlem51 45171 fourierdlem63 45183 fourierdlem79 45199 fourierdlem89 45209 fourierdlem90 45210 fourierdlem91 45211 fourierdlem93 45213 fouriersw 45245 |
Copyright terms: Public domain | W3C validator |