MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssre Structured version   Visualization version   GIF version

Theorem iocssre 13464
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iocssre ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)

Proof of Theorem iocssre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elioc2 13447 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
21biimp3a 1468 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
32simp1d 1141 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
433expia 1120 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ ℝ))
54ssrdv 4001 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2106  wss 3963   class class class wbr 5148  (class class class)co 7431  cr 11152  *cxr 11292   < clt 11293  cle 11294  (,]cioc 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioc 13389
This theorem is referenced by:  iocmnfcld  24805  lhop1  26068  negpitopissre  26597  eff1o  26606  dvlog2lem  26709  iocopn  45473  limcicciooub  45593  limcresiooub  45598  fourierdlem19  46082  fourierdlem33  46096  fourierdlem37  46100  fourierdlem46  46108  fourierdlem48  46110  fourierdlem49  46111  fourierdlem51  46113  fourierdlem63  46125  fourierdlem79  46141  fourierdlem89  46151  fourierdlem90  46152  fourierdlem91  46153  fourierdlem93  46155  fouriersw  46187
  Copyright terms: Public domain W3C validator