MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf33lem Structured version   Visualization version   GIF version

Theorem isf33lem 10053
Description: Lemma for isfin3-3 10055. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf33lem FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Distinct variable group:   𝑔,𝑎,𝑥

Proof of Theorem isf33lem
Dummy variables 𝑏 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 10052 . . . 4 (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓)
2 fveq1 6755 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥))
3 fveq1 6755 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝑥) = (𝑏𝑥))
42, 3sseq12d 3950 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
54ralbidv 3120 . . . . . . . . 9 (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
6 rneq 5834 . . . . . . . . . . 11 (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏)
76inteqd 4881 . . . . . . . . . 10 (𝑎 = 𝑏 ran 𝑎 = ran 𝑏)
87, 6eleq12d 2833 . . . . . . . . 9 (𝑎 = 𝑏 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑏 ∈ ran 𝑏))
95, 8imbi12d 344 . . . . . . . 8 (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
109cbvralvw 3372 . . . . . . 7 (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏))
11 pweq 4546 . . . . . . . . 9 (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦)
1211oveq1d 7270 . . . . . . . 8 (𝑔 = 𝑦 → (𝒫 𝑔m ω) = (𝒫 𝑦m ω))
1312raleqdv 3339 . . . . . . 7 (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1410, 13syl5bb 282 . . . . . 6 (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1514cbvabv 2812 . . . . 5 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1615isf32lem12 10051 . . . 4 (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}))
171, 16mpd 15 . . 3 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
1810abbii 2809 . . . 4 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1918fin23lem41 10039 . . 3 (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII)
2017, 19impbii 208 . 2 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
2120eqriv 2735 1 FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wss 3883  𝒫 cpw 4530   cint 4876   class class class wbr 5070  ran crn 5581  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  m cmap 8573  * cwdom 9253  FinIIIcfin3 9968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-wdom 9254  df-card 9628  df-fin4 9974  df-fin3 9975
This theorem is referenced by:  isfin3-2  10054  isfin3-3  10055  fin23  10076
  Copyright terms: Public domain W3C validator