| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf33lem | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-3 10262. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf33lem | ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10259 | . . . 4 ⊢ (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓) | |
| 2 | fveq1 6821 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥)) | |
| 3 | fveq1 6821 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘𝑥) = (𝑏‘𝑥)) | |
| 4 | 2, 3 | sseq12d 3969 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 5 | 4 | ralbidv 3152 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 6 | rneq 5878 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏) | |
| 7 | 6 | inteqd 4901 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏) |
| 8 | 7, 6 | eleq12d 2822 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏)) |
| 9 | 5, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 10 | 9 | cbvralvw 3207 | . . . . . . 7 ⊢ (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)) |
| 11 | pweq 4565 | . . . . . . . . 9 ⊢ (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦) | |
| 12 | 11 | oveq1d 7364 | . . . . . . . 8 ⊢ (𝑔 = 𝑦 → (𝒫 𝑔 ↑m ω) = (𝒫 𝑦 ↑m ω)) |
| 13 | 12 | raleqdv 3289 | . . . . . . 7 ⊢ (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 14 | 10, 13 | bitrid 283 | . . . . . 6 ⊢ (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 15 | 14 | cbvabv 2799 | . . . . 5 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 16 | 15 | isf32lem12 10258 | . . . 4 ⊢ (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓 → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)})) |
| 17 | 1, 16 | mpd 15 | . . 3 ⊢ (𝑓 ∈ FinIII → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 18 | 10 | abbii 2796 | . . . 4 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 19 | 18 | fin23lem41 10246 | . . 3 ⊢ (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII) |
| 20 | 17, 19 | impbii 209 | . 2 ⊢ (𝑓 ∈ FinIII ↔ 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 21 | 20 | eqriv 2726 | 1 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3903 𝒫 cpw 4551 ∩ cint 4896 class class class wbr 5092 ran crn 5620 suc csuc 6309 ‘cfv 6482 (class class class)co 7349 ωcom 7799 ↑m cmap 8753 ≼* cwdom 9456 FinIIIcfin3 10175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seqom 8370 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-wdom 9457 df-card 9835 df-fin4 10181 df-fin3 10182 |
| This theorem is referenced by: isfin3-2 10261 isfin3-3 10262 fin23 10283 |
| Copyright terms: Public domain | W3C validator |