![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf33lem | Structured version Visualization version GIF version |
Description: Lemma for isfin3-3 10401. (Contributed by Stefan O'Rear, 17-May-2015.) |
Ref | Expression |
---|---|
isf33lem | ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin32i 10398 | . . . 4 ⊢ (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓) | |
2 | fveq1 6901 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥)) | |
3 | fveq1 6901 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘𝑥) = (𝑏‘𝑥)) | |
4 | 2, 3 | sseq12d 4015 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
5 | 4 | ralbidv 3175 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
6 | rneq 5942 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏) | |
7 | 6 | inteqd 4958 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏) |
8 | 7, 6 | eleq12d 2823 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏)) |
9 | 5, 8 | imbi12d 343 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
10 | 9 | cbvralvw 3232 | . . . . . . 7 ⊢ (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)) |
11 | pweq 4620 | . . . . . . . . 9 ⊢ (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦) | |
12 | 11 | oveq1d 7441 | . . . . . . . 8 ⊢ (𝑔 = 𝑦 → (𝒫 𝑔 ↑m ω) = (𝒫 𝑦 ↑m ω)) |
13 | 12 | raleqdv 3323 | . . . . . . 7 ⊢ (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
14 | 10, 13 | bitrid 282 | . . . . . 6 ⊢ (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
15 | 14 | cbvabv 2801 | . . . . 5 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
16 | 15 | isf32lem12 10397 | . . . 4 ⊢ (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓 → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)})) |
17 | 1, 16 | mpd 15 | . . 3 ⊢ (𝑓 ∈ FinIII → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
18 | 10 | abbii 2798 | . . . 4 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
19 | 18 | fin23lem41 10385 | . . 3 ⊢ (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII) |
20 | 17, 19 | impbii 208 | . 2 ⊢ (𝑓 ∈ FinIII ↔ 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
21 | 20 | eqriv 2725 | 1 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 ⊆ wss 3949 𝒫 cpw 4606 ∩ cint 4953 class class class wbr 5152 ran crn 5683 suc csuc 6376 ‘cfv 6553 (class class class)co 7426 ωcom 7878 ↑m cmap 8853 ≼* cwdom 9597 FinIIIcfin3 10314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-seqom 8477 df-1o 8495 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-wdom 9598 df-card 9972 df-fin4 10320 df-fin3 10321 |
This theorem is referenced by: isfin3-2 10400 isfin3-3 10401 fin23 10422 |
Copyright terms: Public domain | W3C validator |