| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf33lem | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-3 10382. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf33lem | ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10379 | . . . 4 ⊢ (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓) | |
| 2 | fveq1 6875 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥)) | |
| 3 | fveq1 6875 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘𝑥) = (𝑏‘𝑥)) | |
| 4 | 2, 3 | sseq12d 3992 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 5 | 4 | ralbidv 3163 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 6 | rneq 5916 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏) | |
| 7 | 6 | inteqd 4927 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏) |
| 8 | 7, 6 | eleq12d 2828 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏)) |
| 9 | 5, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 10 | 9 | cbvralvw 3220 | . . . . . . 7 ⊢ (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)) |
| 11 | pweq 4589 | . . . . . . . . 9 ⊢ (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦) | |
| 12 | 11 | oveq1d 7420 | . . . . . . . 8 ⊢ (𝑔 = 𝑦 → (𝒫 𝑔 ↑m ω) = (𝒫 𝑦 ↑m ω)) |
| 13 | 12 | raleqdv 3305 | . . . . . . 7 ⊢ (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 14 | 10, 13 | bitrid 283 | . . . . . 6 ⊢ (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 15 | 14 | cbvabv 2805 | . . . . 5 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 16 | 15 | isf32lem12 10378 | . . . 4 ⊢ (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓 → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)})) |
| 17 | 1, 16 | mpd 15 | . . 3 ⊢ (𝑓 ∈ FinIII → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 18 | 10 | abbii 2802 | . . . 4 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 19 | 18 | fin23lem41 10366 | . . 3 ⊢ (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII) |
| 20 | 17, 19 | impbii 209 | . 2 ⊢ (𝑓 ∈ FinIII ↔ 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 21 | 20 | eqriv 2732 | 1 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ⊆ wss 3926 𝒫 cpw 4575 ∩ cint 4922 class class class wbr 5119 ran crn 5655 suc csuc 6354 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ↑m cmap 8840 ≼* cwdom 9578 FinIIIcfin3 10295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-wdom 9579 df-card 9953 df-fin4 10301 df-fin3 10302 |
| This theorem is referenced by: isfin3-2 10381 isfin3-3 10382 fin23 10403 |
| Copyright terms: Public domain | W3C validator |