MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf33lem Structured version   Visualization version   GIF version

Theorem isf33lem 10260
Description: Lemma for isfin3-3 10262. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf33lem FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Distinct variable group:   𝑔,𝑎,𝑥

Proof of Theorem isf33lem
Dummy variables 𝑏 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 10259 . . . 4 (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓)
2 fveq1 6821 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥))
3 fveq1 6821 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝑥) = (𝑏𝑥))
42, 3sseq12d 3969 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
54ralbidv 3152 . . . . . . . . 9 (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥)))
6 rneq 5878 . . . . . . . . . . 11 (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏)
76inteqd 4901 . . . . . . . . . 10 (𝑎 = 𝑏 ran 𝑎 = ran 𝑏)
87, 6eleq12d 2822 . . . . . . . . 9 (𝑎 = 𝑏 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑏 ∈ ran 𝑏))
95, 8imbi12d 344 . . . . . . . 8 (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
109cbvralvw 3207 . . . . . . 7 (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏))
11 pweq 4565 . . . . . . . . 9 (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦)
1211oveq1d 7364 . . . . . . . 8 (𝑔 = 𝑦 → (𝒫 𝑔m ω) = (𝒫 𝑦m ω))
1312raleqdv 3289 . . . . . . 7 (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1410, 13bitrid 283 . . . . . 6 (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)))
1514cbvabv 2799 . . . . 5 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1615isf32lem12 10258 . . . 4 (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}))
171, 16mpd 15 . . 3 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
1810abbii 2796 . . . 4 {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏𝑥) → ran 𝑏 ∈ ran 𝑏)}
1918fin23lem41 10246 . . 3 (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII)
2017, 19impbii 209 . 2 (𝑓 ∈ FinIII𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)})
2120eqriv 2726 1 FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3903  𝒫 cpw 4551   cint 4896   class class class wbr 5092  ran crn 5620  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  m cmap 8753  * cwdom 9456  FinIIIcfin3 10175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-wdom 9457  df-card 9835  df-fin4 10181  df-fin3 10182
This theorem is referenced by:  isfin3-2  10261  isfin3-3  10262  fin23  10283
  Copyright terms: Public domain W3C validator