| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf33lem | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-3 10297. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf33lem | ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10294 | . . . 4 ⊢ (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓) | |
| 2 | fveq1 6839 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥)) | |
| 3 | fveq1 6839 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘𝑥) = (𝑏‘𝑥)) | |
| 4 | 2, 3 | sseq12d 3977 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 5 | 4 | ralbidv 3156 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 6 | rneq 5889 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏) | |
| 7 | 6 | inteqd 4911 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏) |
| 8 | 7, 6 | eleq12d 2822 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏)) |
| 9 | 5, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 10 | 9 | cbvralvw 3213 | . . . . . . 7 ⊢ (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)) |
| 11 | pweq 4573 | . . . . . . . . 9 ⊢ (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦) | |
| 12 | 11 | oveq1d 7384 | . . . . . . . 8 ⊢ (𝑔 = 𝑦 → (𝒫 𝑔 ↑m ω) = (𝒫 𝑦 ↑m ω)) |
| 13 | 12 | raleqdv 3296 | . . . . . . 7 ⊢ (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 14 | 10, 13 | bitrid 283 | . . . . . 6 ⊢ (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 15 | 14 | cbvabv 2799 | . . . . 5 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 16 | 15 | isf32lem12 10293 | . . . 4 ⊢ (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓 → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)})) |
| 17 | 1, 16 | mpd 15 | . . 3 ⊢ (𝑓 ∈ FinIII → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 18 | 10 | abbii 2796 | . . . 4 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 19 | 18 | fin23lem41 10281 | . . 3 ⊢ (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII) |
| 20 | 17, 19 | impbii 209 | . 2 ⊢ (𝑓 ∈ FinIII ↔ 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 21 | 20 | eqriv 2726 | 1 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3911 𝒫 cpw 4559 ∩ cint 4906 class class class wbr 5102 ran crn 5632 suc csuc 6322 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ↑m cmap 8776 ≼* cwdom 9493 FinIIIcfin3 10210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seqom 8393 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-wdom 9494 df-card 9868 df-fin4 10216 df-fin3 10217 |
| This theorem is referenced by: isfin3-2 10296 isfin3-3 10297 fin23 10318 |
| Copyright terms: Public domain | W3C validator |