| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf33lem | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-3 10408. (Contributed by Stefan O'Rear, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf33lem | ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10405 | . . . 4 ⊢ (𝑓 ∈ FinIII → ¬ ω ≼* 𝑓) | |
| 2 | fveq1 6905 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘suc 𝑥) = (𝑏‘suc 𝑥)) | |
| 3 | fveq1 6905 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → (𝑎‘𝑥) = (𝑏‘𝑥)) | |
| 4 | 2, 3 | sseq12d 4017 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 5 | 4 | ralbidv 3178 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥))) |
| 6 | rneq 5947 | . . . . . . . . . . 11 ⊢ (𝑎 = 𝑏 → ran 𝑎 = ran 𝑏) | |
| 7 | 6 | inteqd 4951 | . . . . . . . . . 10 ⊢ (𝑎 = 𝑏 → ∩ ran 𝑎 = ∩ ran 𝑏) |
| 8 | 7, 6 | eleq12d 2835 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (∩ ran 𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑏 ∈ ran 𝑏)) |
| 9 | 5, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑎 = 𝑏 → ((∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 10 | 9 | cbvralvw 3237 | . . . . . . 7 ⊢ (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)) |
| 11 | pweq 4614 | . . . . . . . . 9 ⊢ (𝑔 = 𝑦 → 𝒫 𝑔 = 𝒫 𝑦) | |
| 12 | 11 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝑔 = 𝑦 → (𝒫 𝑔 ↑m ω) = (𝒫 𝑦 ↑m ω)) |
| 13 | 12 | raleqdv 3326 | . . . . . . 7 ⊢ (𝑔 = 𝑦 → (∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 14 | 10, 13 | bitrid 283 | . . . . . 6 ⊢ (𝑔 = 𝑦 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏))) |
| 15 | 14 | cbvabv 2812 | . . . . 5 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑦 ∣ ∀𝑏 ∈ (𝒫 𝑦 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 16 | 15 | isf32lem12 10404 | . . . 4 ⊢ (𝑓 ∈ FinIII → (¬ ω ≼* 𝑓 → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)})) |
| 17 | 1, 16 | mpd 15 | . . 3 ⊢ (𝑓 ∈ FinIII → 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 18 | 10 | abbii 2809 | . . . 4 ⊢ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} = {𝑔 ∣ ∀𝑏 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑏‘suc 𝑥) ⊆ (𝑏‘𝑥) → ∩ ran 𝑏 ∈ ran 𝑏)} |
| 19 | 18 | fin23lem41 10392 | . . 3 ⊢ (𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} → 𝑓 ∈ FinIII) |
| 20 | 17, 19 | impbii 209 | . 2 ⊢ (𝑓 ∈ FinIII ↔ 𝑓 ∈ {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)}) |
| 21 | 20 | eqriv 2734 | 1 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ⊆ wss 3951 𝒫 cpw 4600 ∩ cint 4946 class class class wbr 5143 ran crn 5686 suc csuc 6386 ‘cfv 6561 (class class class)co 7431 ωcom 7887 ↑m cmap 8866 ≼* cwdom 9604 FinIIIcfin3 10321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seqom 8488 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-wdom 9605 df-card 9979 df-fin4 10327 df-fin3 10328 |
| This theorem is referenced by: isfin3-2 10407 isfin3-3 10408 fin23 10429 |
| Copyright terms: Public domain | W3C validator |