![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lesub3d | Structured version Visualization version GIF version |
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lesub3d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
lesub3d.g | ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) |
lesub3d.l | ⊢ (𝜑 → 𝐵 ≤ 𝑋) |
Ref | Expression |
---|---|
lesub3d | ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ltnegd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11279 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
4 | lesub3d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
5 | 4, 1 | readdcld 11279 | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ∈ ℝ) |
6 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 1 | recnd 11278 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
8 | 2 | recnd 11278 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
9 | 7, 8 | addcomd 11452 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶)) |
10 | lesub3d.l | . . . . 5 ⊢ (𝜑 → 𝐵 ≤ 𝑋) | |
11 | 2, 4, 1, 10 | leadd1dd 11864 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐶) ≤ (𝑋 + 𝐶)) |
12 | 9, 11 | eqbrtrd 5172 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ (𝑋 + 𝐶)) |
13 | lesub3d.g | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) | |
14 | 3, 5, 6, 12, 13 | letrd 11407 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ 𝐴) |
15 | leaddsub 11726 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) | |
16 | 1, 2, 6, 15 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) |
17 | 14, 16 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 class class class wbr 5150 (class class class)co 7424 ℝcr 11143 + caddc 11147 ≤ cle 11285 − cmin 11480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 |
This theorem is referenced by: prmgaplem8 17032 bcmono 27228 fltnlta 42090 |
Copyright terms: Public domain | W3C validator |