Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lesub3d | Structured version Visualization version GIF version |
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lesub3d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
lesub3d.g | ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) |
lesub3d.l | ⊢ (𝜑 → 𝐵 ≤ 𝑋) |
Ref | Expression |
---|---|
lesub3d | ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ltnegd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11004 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
4 | lesub3d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
5 | 4, 1 | readdcld 11004 | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ∈ ℝ) |
6 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 1 | recnd 11003 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
8 | 2 | recnd 11003 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
9 | 7, 8 | addcomd 11177 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶)) |
10 | lesub3d.l | . . . . 5 ⊢ (𝜑 → 𝐵 ≤ 𝑋) | |
11 | 2, 4, 1, 10 | leadd1dd 11589 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐶) ≤ (𝑋 + 𝐶)) |
12 | 9, 11 | eqbrtrd 5096 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ (𝑋 + 𝐶)) |
13 | lesub3d.g | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) | |
14 | 3, 5, 6, 12, 13 | letrd 11132 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ 𝐴) |
15 | leaddsub 11451 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) | |
16 | 1, 2, 6, 15 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) |
17 | 14, 16 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 + caddc 10874 ≤ cle 11010 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: prmgaplem8 16759 bcmono 26425 fltnlta 40500 |
Copyright terms: Public domain | W3C validator |