![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lesub3d | Structured version Visualization version GIF version |
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lesub3d.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
lesub3d.g | ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) |
lesub3d.l | ⊢ (𝜑 → 𝐵 ≤ 𝑋) |
Ref | Expression |
---|---|
lesub3d | ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | ltnegd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | readdcld 11247 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
4 | lesub3d.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
5 | 4, 1 | readdcld 11247 | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ∈ ℝ) |
6 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | 1 | recnd 11246 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
8 | 2 | recnd 11246 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
9 | 7, 8 | addcomd 11420 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐵) = (𝐵 + 𝐶)) |
10 | lesub3d.l | . . . . 5 ⊢ (𝜑 → 𝐵 ≤ 𝑋) | |
11 | 2, 4, 1, 10 | leadd1dd 11832 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐶) ≤ (𝑋 + 𝐶)) |
12 | 9, 11 | eqbrtrd 5169 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ (𝑋 + 𝐶)) |
13 | lesub3d.g | . . 3 ⊢ (𝜑 → (𝑋 + 𝐶) ≤ 𝐴) | |
14 | 3, 5, 6, 12, 13 | letrd 11375 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ 𝐴) |
15 | leaddsub 11694 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) | |
16 | 1, 2, 6, 15 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 − 𝐵))) |
17 | 14, 16 | mpbid 231 | 1 ⊢ (𝜑 → 𝐶 ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 + caddc 11115 ≤ cle 11253 − cmin 11448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: prmgaplem8 16995 bcmono 27016 fltnlta 41707 |
Copyright terms: Public domain | W3C validator |