Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltnlta Structured version   Visualization version   GIF version

Theorem fltnlta 42650
Description: In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 42648). See https://youtu.be/EymVXkPWxyc 42648 for an outline. (Contributed by SN, 24-Aug-2023.)
Hypotheses
Ref Expression
fltltc.a (𝜑𝐴 ∈ ℕ)
fltltc.b (𝜑𝐵 ∈ ℕ)
fltltc.c (𝜑𝐶 ∈ ℕ)
fltltc.n (𝜑𝑁 ∈ (ℤ‘3))
fltltc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltnlta.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
fltnlta (𝜑𝑁 < 𝐴)

Proof of Theorem fltnlta
StepHypRef Expression
1 fltltc.n . . . 4 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzge3nn 12930 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
31, 2syl 17 . . 3 (𝜑𝑁 ∈ ℕ)
43nnred 12279 . 2 (𝜑𝑁 ∈ ℝ)
5 fltltc.c . . . . . 6 (𝜑𝐶 ∈ ℕ)
65nnred 12279 . . . . 5 (𝜑𝐶 ∈ ℝ)
7 fltltc.b . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnred 12279 . . . . 5 (𝜑𝐵 ∈ ℝ)
96, 8resubcld 11689 . . . 4 (𝜑 → (𝐶𝐵) ∈ ℝ)
10 uzuzle23 12929 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
11 uz2m1nn 12963 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
121, 10, 113syl 18 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ)
1312nnnn0d 12585 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ0)
146, 13reexpcld 14200 . . . . 5 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℝ)
1512nnred 12279 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
168, 13reexpcld 14200 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℝ)
1715, 16remulcld 11289 . . . . 5 (𝜑 → ((𝑁 − 1) · (𝐵↑(𝑁 − 1))) ∈ ℝ)
1814, 17readdcld 11288 . . . 4 (𝜑 → ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
199, 18remulcld 11289 . . 3 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
20 fltltc.a . . . . 5 (𝜑𝐴 ∈ ℕ)
2120nnrpd 13073 . . . 4 (𝜑𝐴 ∈ ℝ+)
2212nnzd 12638 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℤ)
2321, 22rpexpcld 14283 . . 3 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ+)
2419, 23rerpdivcld 13106 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
2520nnred 12279 . 2 (𝜑𝐴 ∈ ℝ)
2616, 17readdcld 11288 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
279, 26remulcld 11289 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
2827, 23rerpdivcld 13106 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
299, 4remulcld 11289 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℝ)
30 1cnd 11254 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3112nncnd 12280 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℂ)
3216recnd 11287 . . . . . . . . . 10 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℂ)
3330, 31, 32adddird 11284 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
343nncnd 12280 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
3530, 34pncan3d 11621 . . . . . . . . . 10 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
3635oveq1d 7446 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = (𝑁 · (𝐵↑(𝑁 − 1))))
3732mullidd 11277 . . . . . . . . . 10 (𝜑 → (1 · (𝐵↑(𝑁 − 1))) = (𝐵↑(𝑁 − 1)))
3837oveq1d 7446 . . . . . . . . 9 (𝜑 → ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
3933, 36, 383eqtr3rd 2784 . . . . . . . 8 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = (𝑁 · (𝐵↑(𝑁 − 1))))
4039oveq2d 7447 . . . . . . 7 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) = ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
4140oveq1d 7446 . . . . . 6 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
4241, 28eqeltrrd 2840 . . . . 5 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
433nnnn0d 12585 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4443nn0ge0d 12588 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
45 1red 11260 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
46 fltltc.1 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4720, 7, 5, 1, 46fltltc 42648 . . . . . . . 8 (𝜑𝐵 < 𝐶)
48 nnltp1le 12672 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
497, 5, 48syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
5047, 49mpbid 232 . . . . . . 7 (𝜑 → (𝐵 + 1) ≤ 𝐶)
518leidd 11827 . . . . . . 7 (𝜑𝐵𝐵)
526, 8, 45, 8, 50, 51lesub3d 11879 . . . . . 6 (𝜑 → 1 ≤ (𝐶𝐵))
534, 9, 44, 52lemulge12d 12204 . . . . 5 (𝜑𝑁 ≤ ((𝐶𝐵) · 𝑁))
549recnd 11287 . . . . . . . . 9 (𝜑 → (𝐶𝐵) ∈ ℂ)
5523rpred 13075 . . . . . . . . . 10 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ)
5655recnd 11287 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℂ)
5754, 34, 56mulassd 11282 . . . . . . . 8 (𝜑 → (((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))))
5857oveq1d 7446 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
5954, 34mulcld 11279 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℂ)
6020nncnd 12280 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
6120nnne0d 12314 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
6260, 61, 22expne0d 14189 . . . . . . . 8 (𝜑 → (𝐴↑(𝑁 − 1)) ≠ 0)
6359, 56, 62divcan4d 12047 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
6458, 63eqtr3d 2777 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
654, 55remulcld 11289 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) ∈ ℝ)
669, 65remulcld 11289 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) ∈ ℝ)
6740, 27eqeltrrd 2840 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
6839, 26eqeltrrd 2840 . . . . . . . 8 (𝜑 → (𝑁 · (𝐵↑(𝑁 − 1))) ∈ ℝ)
69 difrp 13071 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
708, 6, 69syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
7147, 70mpbid 232 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℝ+)
723nnrpd 13073 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
737nnrpd 13073 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
74 fltnlta.1 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7521, 73, 12, 74ltexp1dd 14296 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) < (𝐵↑(𝑁 − 1)))
7655, 16, 72, 75ltmul2dd 13131 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) < (𝑁 · (𝐵↑(𝑁 − 1))))
7765, 68, 71, 76ltmul2dd 13131 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) < ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
7866, 67, 23, 77ltdiv1dd 13132 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
7964, 78eqbrtrrd 5172 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
804, 29, 42, 53, 79lelttrd 11417 . . . 4 (𝜑𝑁 < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
8180, 41breqtrrd 5176 . . 3 (𝜑𝑁 < (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
825nnrpd 13073 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
8373, 82, 12, 47ltexp1dd 14296 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) < (𝐶↑(𝑁 − 1)))
8416, 14, 17, 83ltadd1dd 11872 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) < ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
8526, 18, 71, 84ltmul2dd 13131 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))))
8627, 19, 23, 85ltdiv1dd 13132 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
874, 28, 24, 81, 86lttrd 11420 . 2 (𝜑𝑁 < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
8825, 43reexpcld 14200 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℝ)
8920, 7, 5, 1, 46fltnltalem 42649 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴𝑁))
9019, 88, 23, 89ltdiv1dd 13132 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9134, 30nncand 11623 . . . . 5 (𝜑 → (𝑁 − (𝑁 − 1)) = 1)
9291oveq2d 7447 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = (𝐴↑1))
933nnzd 12638 . . . . 5 (𝜑𝑁 ∈ ℤ)
9460, 61, 22, 93expsubd 14194 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9560exp1d 14178 . . . 4 (𝜑 → (𝐴↑1) = 𝐴)
9692, 94, 953eqtr3d 2783 . . 3 (𝜑 → ((𝐴𝑁) / (𝐴↑(𝑁 − 1))) = 𝐴)
9790, 96breqtrd 5174 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < 𝐴)
984, 24, 25, 87, 97lttrd 11420 1 (𝜑𝑁 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  cuz 12876  +crp 13032  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator