Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltnlta Structured version   Visualization version   GIF version

Theorem fltnlta 40987
Description: In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 40985). See https://youtu.be/EymVXkPWxyc 40985 for an outline. (Contributed by SN, 24-Aug-2023.)
Hypotheses
Ref Expression
fltltc.a (𝜑𝐴 ∈ ℕ)
fltltc.b (𝜑𝐵 ∈ ℕ)
fltltc.c (𝜑𝐶 ∈ ℕ)
fltltc.n (𝜑𝑁 ∈ (ℤ‘3))
fltltc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltnlta.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
fltnlta (𝜑𝑁 < 𝐴)

Proof of Theorem fltnlta
StepHypRef Expression
1 fltltc.n . . . 4 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzge3nn 12815 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
31, 2syl 17 . . 3 (𝜑𝑁 ∈ ℕ)
43nnred 12168 . 2 (𝜑𝑁 ∈ ℝ)
5 fltltc.c . . . . . 6 (𝜑𝐶 ∈ ℕ)
65nnred 12168 . . . . 5 (𝜑𝐶 ∈ ℝ)
7 fltltc.b . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnred 12168 . . . . 5 (𝜑𝐵 ∈ ℝ)
96, 8resubcld 11583 . . . 4 (𝜑 → (𝐶𝐵) ∈ ℝ)
10 uzuzle23 12814 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
11 uz2m1nn 12848 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
121, 10, 113syl 18 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ)
1312nnnn0d 12473 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ0)
146, 13reexpcld 14068 . . . . 5 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℝ)
1512nnred 12168 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
168, 13reexpcld 14068 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℝ)
1715, 16remulcld 11185 . . . . 5 (𝜑 → ((𝑁 − 1) · (𝐵↑(𝑁 − 1))) ∈ ℝ)
1814, 17readdcld 11184 . . . 4 (𝜑 → ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
199, 18remulcld 11185 . . 3 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
20 fltltc.a . . . . 5 (𝜑𝐴 ∈ ℕ)
2120nnrpd 12955 . . . 4 (𝜑𝐴 ∈ ℝ+)
2212nnzd 12526 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℤ)
2321, 22rpexpcld 14150 . . 3 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ+)
2419, 23rerpdivcld 12988 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
2520nnred 12168 . 2 (𝜑𝐴 ∈ ℝ)
2616, 17readdcld 11184 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
279, 26remulcld 11185 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
2827, 23rerpdivcld 12988 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
299, 4remulcld 11185 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℝ)
30 1cnd 11150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3112nncnd 12169 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℂ)
3216recnd 11183 . . . . . . . . . 10 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℂ)
3330, 31, 32adddird 11180 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
343nncnd 12169 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
3530, 34pncan3d 11515 . . . . . . . . . 10 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
3635oveq1d 7372 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = (𝑁 · (𝐵↑(𝑁 − 1))))
3732mulid2d 11173 . . . . . . . . . 10 (𝜑 → (1 · (𝐵↑(𝑁 − 1))) = (𝐵↑(𝑁 − 1)))
3837oveq1d 7372 . . . . . . . . 9 (𝜑 → ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
3933, 36, 383eqtr3rd 2785 . . . . . . . 8 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = (𝑁 · (𝐵↑(𝑁 − 1))))
4039oveq2d 7373 . . . . . . 7 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) = ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
4140oveq1d 7372 . . . . . 6 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
4241, 28eqeltrrd 2839 . . . . 5 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
433nnnn0d 12473 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4443nn0ge0d 12476 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
45 1red 11156 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
46 fltltc.1 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4720, 7, 5, 1, 46fltltc 40985 . . . . . . . 8 (𝜑𝐵 < 𝐶)
48 nnltp1le 12559 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
497, 5, 48syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
5047, 49mpbid 231 . . . . . . 7 (𝜑 → (𝐵 + 1) ≤ 𝐶)
518leidd 11721 . . . . . . 7 (𝜑𝐵𝐵)
526, 8, 45, 8, 50, 51lesub3d 11773 . . . . . 6 (𝜑 → 1 ≤ (𝐶𝐵))
534, 9, 44, 52lemulge12d 12093 . . . . 5 (𝜑𝑁 ≤ ((𝐶𝐵) · 𝑁))
549recnd 11183 . . . . . . . . 9 (𝜑 → (𝐶𝐵) ∈ ℂ)
5523rpred 12957 . . . . . . . . . 10 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ)
5655recnd 11183 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℂ)
5754, 34, 56mulassd 11178 . . . . . . . 8 (𝜑 → (((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))))
5857oveq1d 7372 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
5954, 34mulcld 11175 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℂ)
6020nncnd 12169 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
6120nnne0d 12203 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
6260, 61, 22expne0d 14057 . . . . . . . 8 (𝜑 → (𝐴↑(𝑁 − 1)) ≠ 0)
6359, 56, 62divcan4d 11937 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
6458, 63eqtr3d 2778 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
654, 55remulcld 11185 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) ∈ ℝ)
669, 65remulcld 11185 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) ∈ ℝ)
6740, 27eqeltrrd 2839 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
6839, 26eqeltrrd 2839 . . . . . . . 8 (𝜑 → (𝑁 · (𝐵↑(𝑁 − 1))) ∈ ℝ)
69 difrp 12953 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
708, 6, 69syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
7147, 70mpbid 231 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℝ+)
723nnrpd 12955 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
737nnrpd 12955 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
74 fltnlta.1 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7521, 73, 12, 74ltexp1dd 40795 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) < (𝐵↑(𝑁 − 1)))
7655, 16, 72, 75ltmul2dd 13013 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) < (𝑁 · (𝐵↑(𝑁 − 1))))
7765, 68, 71, 76ltmul2dd 13013 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) < ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
7866, 67, 23, 77ltdiv1dd 13014 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
7964, 78eqbrtrrd 5129 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
804, 29, 42, 53, 79lelttrd 11313 . . . 4 (𝜑𝑁 < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
8180, 41breqtrrd 5133 . . 3 (𝜑𝑁 < (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
825nnrpd 12955 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
8373, 82, 12, 47ltexp1dd 40795 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) < (𝐶↑(𝑁 − 1)))
8416, 14, 17, 83ltadd1dd 11766 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) < ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
8526, 18, 71, 84ltmul2dd 13013 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))))
8627, 19, 23, 85ltdiv1dd 13014 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
874, 28, 24, 81, 86lttrd 11316 . 2 (𝜑𝑁 < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
8825, 43reexpcld 14068 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℝ)
8920, 7, 5, 1, 46fltnltalem 40986 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴𝑁))
9019, 88, 23, 89ltdiv1dd 13014 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9134, 30nncand 11517 . . . . 5 (𝜑 → (𝑁 − (𝑁 − 1)) = 1)
9291oveq2d 7373 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = (𝐴↑1))
933nnzd 12526 . . . . 5 (𝜑𝑁 ∈ ℤ)
9460, 61, 22, 93expsubd 14062 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9560exp1d 14046 . . . 4 (𝜑 → (𝐴↑1) = 𝐴)
9692, 94, 953eqtr3d 2784 . . 3 (𝜑 → ((𝐴𝑁) / (𝐴↑(𝑁 − 1))) = 𝐴)
9790, 96breqtrd 5131 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < 𝐴)
984, 24, 25, 87, 97lttrd 11316 1 (𝜑𝑁 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  cuz 12763  +crp 12915  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator