Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fltnlta Structured version   Visualization version   GIF version

Theorem fltnlta 40416
Description: In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 40414). See https://youtu.be/EymVXkPWxyc 40414 for an outline. (Contributed by SN, 24-Aug-2023.)
Hypotheses
Ref Expression
fltltc.a (𝜑𝐴 ∈ ℕ)
fltltc.b (𝜑𝐵 ∈ ℕ)
fltltc.c (𝜑𝐶 ∈ ℕ)
fltltc.n (𝜑𝑁 ∈ (ℤ‘3))
fltltc.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
fltnlta.1 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
fltnlta (𝜑𝑁 < 𝐴)

Proof of Theorem fltnlta
StepHypRef Expression
1 fltltc.n . . . 4 (𝜑𝑁 ∈ (ℤ‘3))
2 eluzge3nn 12559 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
31, 2syl 17 . . 3 (𝜑𝑁 ∈ ℕ)
43nnred 11918 . 2 (𝜑𝑁 ∈ ℝ)
5 fltltc.c . . . . . 6 (𝜑𝐶 ∈ ℕ)
65nnred 11918 . . . . 5 (𝜑𝐶 ∈ ℝ)
7 fltltc.b . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnred 11918 . . . . 5 (𝜑𝐵 ∈ ℝ)
96, 8resubcld 11333 . . . 4 (𝜑 → (𝐶𝐵) ∈ ℝ)
10 uzuzle23 12558 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
11 uz2m1nn 12592 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
121, 10, 113syl 18 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ)
1312nnnn0d 12223 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ0)
146, 13reexpcld 13809 . . . . 5 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℝ)
1512nnred 11918 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℝ)
168, 13reexpcld 13809 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℝ)
1715, 16remulcld 10936 . . . . 5 (𝜑 → ((𝑁 − 1) · (𝐵↑(𝑁 − 1))) ∈ ℝ)
1814, 17readdcld 10935 . . . 4 (𝜑 → ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
199, 18remulcld 10936 . . 3 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
20 fltltc.a . . . . 5 (𝜑𝐴 ∈ ℕ)
2120nnrpd 12699 . . . 4 (𝜑𝐴 ∈ ℝ+)
2212nnzd 12354 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℤ)
2321, 22rpexpcld 13890 . . 3 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ+)
2419, 23rerpdivcld 12732 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
2520nnred 11918 . 2 (𝜑𝐴 ∈ ℝ)
2616, 17readdcld 10935 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
279, 26remulcld 10936 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) ∈ ℝ)
2827, 23rerpdivcld 12732 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
299, 4remulcld 10936 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℝ)
30 1cnd 10901 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3112nncnd 11919 . . . . . . . . . 10 (𝜑 → (𝑁 − 1) ∈ ℂ)
3216recnd 10934 . . . . . . . . . 10 (𝜑 → (𝐵↑(𝑁 − 1)) ∈ ℂ)
3330, 31, 32adddird 10931 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
343nncnd 11919 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
3530, 34pncan3d 11265 . . . . . . . . . 10 (𝜑 → (1 + (𝑁 − 1)) = 𝑁)
3635oveq1d 7270 . . . . . . . . 9 (𝜑 → ((1 + (𝑁 − 1)) · (𝐵↑(𝑁 − 1))) = (𝑁 · (𝐵↑(𝑁 − 1))))
3732mulid2d 10924 . . . . . . . . . 10 (𝜑 → (1 · (𝐵↑(𝑁 − 1))) = (𝐵↑(𝑁 − 1)))
3837oveq1d 7270 . . . . . . . . 9 (𝜑 → ((1 · (𝐵↑(𝑁 − 1))) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
3933, 36, 383eqtr3rd 2787 . . . . . . . 8 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) = (𝑁 · (𝐵↑(𝑁 − 1))))
4039oveq2d 7271 . . . . . . 7 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) = ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
4140oveq1d 7270 . . . . . 6 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
4241, 28eqeltrrd 2840 . . . . 5 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) ∈ ℝ)
433nnnn0d 12223 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4443nn0ge0d 12226 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
45 1red 10907 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
46 fltltc.1 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
4720, 7, 5, 1, 46fltltc 40414 . . . . . . . 8 (𝜑𝐵 < 𝐶)
48 nnltp1le 12306 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
497, 5, 48syl2anc 583 . . . . . . . 8 (𝜑 → (𝐵 < 𝐶 ↔ (𝐵 + 1) ≤ 𝐶))
5047, 49mpbid 231 . . . . . . 7 (𝜑 → (𝐵 + 1) ≤ 𝐶)
518leidd 11471 . . . . . . 7 (𝜑𝐵𝐵)
526, 8, 45, 8, 50, 51lesub3d 11523 . . . . . 6 (𝜑 → 1 ≤ (𝐶𝐵))
534, 9, 44, 52lemulge12d 11843 . . . . 5 (𝜑𝑁 ≤ ((𝐶𝐵) · 𝑁))
549recnd 10934 . . . . . . . . 9 (𝜑 → (𝐶𝐵) ∈ ℂ)
5523rpred 12701 . . . . . . . . . 10 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℝ)
5655recnd 10934 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) ∈ ℂ)
5754, 34, 56mulassd 10929 . . . . . . . 8 (𝜑 → (((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))))
5857oveq1d 7270 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
5954, 34mulcld 10926 . . . . . . . 8 (𝜑 → ((𝐶𝐵) · 𝑁) ∈ ℂ)
6020nncnd 11919 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
6120nnne0d 11953 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
6260, 61, 22expne0d 13798 . . . . . . . 8 (𝜑 → (𝐴↑(𝑁 − 1)) ≠ 0)
6359, 56, 62divcan4d 11687 . . . . . . 7 (𝜑 → ((((𝐶𝐵) · 𝑁) · (𝐴↑(𝑁 − 1))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
6458, 63eqtr3d 2780 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) = ((𝐶𝐵) · 𝑁))
654, 55remulcld 10936 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) ∈ ℝ)
669, 65remulcld 10936 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) ∈ ℝ)
6740, 27eqeltrrd 2840 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) ∈ ℝ)
6839, 26eqeltrrd 2840 . . . . . . . 8 (𝜑 → (𝑁 · (𝐵↑(𝑁 − 1))) ∈ ℝ)
69 difrp 12697 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
708, 6, 69syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
7147, 70mpbid 231 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℝ+)
723nnrpd 12699 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
737nnrpd 12699 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
74 fltnlta.1 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7521, 73, 12, 74ltexp1dd 40244 . . . . . . . . 9 (𝜑 → (𝐴↑(𝑁 − 1)) < (𝐵↑(𝑁 − 1)))
7655, 16, 72, 75ltmul2dd 12757 . . . . . . . 8 (𝜑 → (𝑁 · (𝐴↑(𝑁 − 1))) < (𝑁 · (𝐵↑(𝑁 − 1))))
7765, 68, 71, 76ltmul2dd 12757 . . . . . . 7 (𝜑 → ((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) < ((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))))
7866, 67, 23, 77ltdiv1dd 12758 . . . . . 6 (𝜑 → (((𝐶𝐵) · (𝑁 · (𝐴↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
7964, 78eqbrtrrd 5094 . . . . 5 (𝜑 → ((𝐶𝐵) · 𝑁) < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
804, 29, 42, 53, 79lelttrd 11063 . . . 4 (𝜑𝑁 < (((𝐶𝐵) · (𝑁 · (𝐵↑(𝑁 − 1)))) / (𝐴↑(𝑁 − 1))))
8180, 41breqtrrd 5098 . . 3 (𝜑𝑁 < (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
825nnrpd 12699 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
8373, 82, 12, 47ltexp1dd 40244 . . . . . 6 (𝜑 → (𝐵↑(𝑁 − 1)) < (𝐶↑(𝑁 − 1)))
8416, 14, 17, 83ltadd1dd 11516 . . . . 5 (𝜑 → ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))) < ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1)))))
8526, 18, 71, 84ltmul2dd 12757 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))))
8627, 19, 23, 85ltdiv1dd 12758 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐵↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
874, 28, 24, 81, 86lttrd 11066 . 2 (𝜑𝑁 < (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))))
8825, 43reexpcld 13809 . . . 4 (𝜑 → (𝐴𝑁) ∈ ℝ)
8920, 7, 5, 1, 46fltnltalem 40415 . . . 4 (𝜑 → ((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴𝑁))
9019, 88, 23, 89ltdiv1dd 12758 . . 3 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9134, 30nncand 11267 . . . . 5 (𝜑 → (𝑁 − (𝑁 − 1)) = 1)
9291oveq2d 7271 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = (𝐴↑1))
933nnzd 12354 . . . . 5 (𝜑𝑁 ∈ ℤ)
9460, 61, 22, 93expsubd 13803 . . . 4 (𝜑 → (𝐴↑(𝑁 − (𝑁 − 1))) = ((𝐴𝑁) / (𝐴↑(𝑁 − 1))))
9560exp1d 13787 . . . 4 (𝜑 → (𝐴↑1) = 𝐴)
9692, 94, 953eqtr3d 2786 . . 3 (𝜑 → ((𝐴𝑁) / (𝐴↑(𝑁 − 1))) = 𝐴)
9790, 96breqtrd 5096 . 2 (𝜑 → (((𝐶𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) / (𝐴↑(𝑁 − 1))) < 𝐴)
984, 24, 25, 87, 97lttrd 11066 1 (𝜑𝑁 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  cuz 12511  +crp 12659  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator