MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub2dd Structured version   Visualization version   GIF version

Theorem lesub2dd 10936
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
leadd1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lesub2dd (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))

Proof of Theorem lesub2dd
StepHypRef Expression
1 leadd1dd.4 . 2 (𝜑𝐴𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4lesub2d 10927 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
61, 5mpbid 224 1 (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   class class class wbr 4843  (class class class)co 6878  cr 10223  cle 10364  cmin 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559
This theorem is referenced by:  subeluzsub  11961  fzomaxdiflem  14423  icodiamlt  14515  climsqz  14712  rlimsqz  14721  climsup  14741  dvlog2lem  24739  atans2  25010  harmonicbnd4  25089  lgamgulmlem3  25109  gausslemma2dlem1a  25442  pntrlog2bndlem1  25618  pntrlog2bndlem5  25622  pntpbnd1  25627  pntlemj  25644  clwlkclwwlklem2fv1  27288  dnibndlem7  32982  dnibndlem8  32983  unbdqndv2lem2  33009  iccbnd  34126  irrapxlem3  38170  jm2.17a  38308  fzmaxdif  38329  ioodvbdlimc2lem  40889  dvnmul  40898  stoweidlem24  40980  stoweidlem41  40997  stoweidlem45  41001  fourierdlem7  41070  fourierdlem19  41082  fourierdlem42  41105  fourierdlem63  41125  fourierdlem65  41127  etransclem24  41214  etransclem27  41217
  Copyright terms: Public domain W3C validator