| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lesub2dd | Structured version Visualization version GIF version | ||
| Description: Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lesub2dd | ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | lesub2d 11731 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 − 𝐵) ≤ (𝐶 − 𝐴))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 ℝcr 11011 ≤ cle 11153 − cmin 11350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 |
| This theorem is referenced by: subeluzsub 12775 fzomaxdiflem 15256 icodiamlt 15351 climsqz 15554 rlimsqz 15563 climsup 15583 dvlog2lem 26594 atans2 26874 harmonicbnd4 26954 lgamgulmlem3 26974 gausslemma2dlem1a 27309 pntrlog2bndlem1 27521 pntrlog2bndlem5 27525 pntpbnd1 27530 pntlemj 27547 clwlkclwwlklem2fv1 29982 dnibndlem7 36535 dnibndlem8 36536 unbdqndv2lem2 36561 iccbnd 37886 irrapxlem3 42922 jm2.17a 43058 fzmaxdif 43079 ioodvbdlimc2lem 46037 dvnmul 46046 stoweidlem24 46127 stoweidlem41 46144 stoweidlem45 46148 fourierdlem7 46217 fourierdlem19 46229 fourierdlem42 46252 fourierdlem63 46272 fourierdlem65 46274 etransclem24 46361 etransclem27 46364 |
| Copyright terms: Public domain | W3C validator |