MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub2dd Structured version   Visualization version   GIF version

Theorem lesub2dd 11251
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
leadd1dd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
lesub2dd (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))

Proof of Theorem lesub2dd
StepHypRef Expression
1 leadd1dd.4 . 2 (𝜑𝐴𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4lesub2d 11242 . 2 (𝜑 → (𝐴𝐵 ↔ (𝐶𝐵) ≤ (𝐶𝐴)))
61, 5mpbid 233 1 (𝜑 → (𝐶𝐵) ≤ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5063  (class class class)co 7150  cr 10530  cle 10670  cmin 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  subeluzsub  12269  fzomaxdiflem  14697  icodiamlt  14790  climsqz  14992  rlimsqz  15001  climsup  15021  dvlog2lem  25167  atans2  25441  harmonicbnd4  25521  lgamgulmlem3  25541  gausslemma2dlem1a  25874  pntrlog2bndlem1  26086  pntrlog2bndlem5  26090  pntpbnd1  26095  pntlemj  26112  clwlkclwwlklem2fv1  27706  dnibndlem7  33726  dnibndlem8  33727  unbdqndv2lem2  33752  iccbnd  35005  irrapxlem3  39305  jm2.17a  39441  fzmaxdif  39462  ioodvbdlimc2lem  42103  dvnmul  42112  stoweidlem24  42194  stoweidlem41  42211  stoweidlem45  42215  fourierdlem7  42284  fourierdlem19  42296  fourierdlem42  42319  fourierdlem63  42339  fourierdlem65  42341  etransclem24  42428  etransclem27  42431
  Copyright terms: Public domain W3C validator