Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5148 (class class class)co 7411
ℝcr 11111 + caddc 11115 ≤ cle 11251 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 |
This theorem is referenced by: lesub3d
11834 supaddc
12183 eluzadd
12853 rpnnen1lem5
12967 xleadd1a
13234 fzoaddel
13687 fladdz
13792 ltdifltdiv
13801 bernneq3
14196 caucvgrlem
15621 eirrlem
16149 vdwlem3
16918 vdwlem9
16924 vdwlem10
16925 2expltfac
17028 pcoass
24547 trirn
24924 minveclem2
24950 ovolfiniun
25025 ovolshftlem1
25033 unmbl
25061 uniioombllem5
25111 opnmbllem
25125 vitalilem2
25133 itg2split
25274 dvfsumlem2
25551 dvfsumlem4
25553 dvfsum2
25558 fta1glem2
25691 coemullem
25771 fta1lem
25827 leibpi
26454 log2tlbnd
26457 jensenlem2
26499 harmonicubnd
26521 harmonicbnd4
26522 lgamgulmlem5
26544 lgambdd
26548 ppiub
26714 bposlem5
26798 mulog2sumlem2
27045 selberg2lem
27060 chpdifbndlem1
27063 pntrlog2bndlem2
27088 pntpbnd2
27097 pntibndlem2
27101 pntlemg
27108 pntlemk
27116 pntlemo
27117 qabvle
27135 ostth2lem3
27145 minvecolem2
30166 nndiffz1
32035 wrdt2ind
32155 cycpmco2lem6
32331 reofld
32500 dya2icoseg
33345 resconn
34306 gg-dvfsumlem2
35252 poimirlem15
36589 opnmbllem0
36610 itg2addnclem3
36627 bfplem2
36777 lcmineqlem19
40998 aks4d1p1p4
41022 aks4d1p1p7
41025 sticksstones12
41060 metakunt2
41072 pellexlem2
41650 rmygeid
41785 jm3.1lem2
41839 fzisoeu
44089 absnpncan2d
44091 absnpncan3d
44096 leadd12dd
44105 iccshift
44310 fsumnncl
44367 climsuselem1
44402 sumnnodd
44425 climleltrp
44471 dvbdfbdioolem2
44724 ioodvbdlimc1lem1
44726 ioodvbdlimc1lem2
44727 ioodvbdlimc2lem
44729 dvnmul
44738 iblspltprt
44768 itgspltprt
44774 itgiccshift
44775 itgperiod
44776 stoweidlem1
44796 stoweidlem11
44806 stoweidlem14
44809 stoweidlem26
44821 stoweidlem44
44839 stirlinglem11
44879 fourierdlem10
44912 fourierdlem11
44913 fourierdlem15
44917 fourierdlem30
44932 fourierdlem42
44944 fourierdlem68
44969 fourierdlem79
44980 fourierdlem92
44993 sge0xaddlem1
45228 carageniuncllem2
45317 hoidmv1lelem1
45386 ovolval5lem1
45447 smfmullem1
45586 |