Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2104
class class class wbr 5147 (class class class)co 7411
ℝcr 11111 + caddc 11115 ≤ cle 11253 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 |
This theorem is referenced by: lesub3d
11836 supaddc
12185 eluzadd
12855 rpnnen1lem5
12969 xleadd1a
13236 fzoaddel
13689 fladdz
13794 ltdifltdiv
13803 bernneq3
14198 caucvgrlem
15623 eirrlem
16151 vdwlem3
16920 vdwlem9
16926 vdwlem10
16927 2expltfac
17030 pcoass
24771 trirn
25148 minveclem2
25174 ovolfiniun
25250 ovolshftlem1
25258 unmbl
25286 uniioombllem5
25336 opnmbllem
25350 vitalilem2
25358 itg2split
25499 dvfsumlem2
25779 dvfsumlem4
25781 dvfsum2
25786 fta1glem2
25919 coemullem
25999 fta1lem
26056 leibpi
26683 log2tlbnd
26686 jensenlem2
26728 harmonicubnd
26750 harmonicbnd4
26751 lgamgulmlem5
26773 lgambdd
26777 ppiub
26943 bposlem5
27027 mulog2sumlem2
27274 selberg2lem
27289 chpdifbndlem1
27292 pntrlog2bndlem2
27317 pntpbnd2
27326 pntibndlem2
27330 pntlemg
27337 pntlemk
27345 pntlemo
27346 qabvle
27364 ostth2lem3
27374 minvecolem2
30395 nndiffz1
32264 wrdt2ind
32384 cycpmco2lem6
32560 reofld
32729 dya2icoseg
33574 resconn
34535 gg-dvfsumlem2
35469 poimirlem15
36806 opnmbllem0
36827 itg2addnclem3
36844 bfplem2
36994 lcmineqlem19
41218 aks4d1p1p4
41242 aks4d1p1p7
41245 sticksstones12
41280 metakunt2
41292 pellexlem2
41870 rmygeid
42005 jm3.1lem2
42059 fzisoeu
44308 absnpncan2d
44310 absnpncan3d
44315 leadd12dd
44324 iccshift
44529 fsumnncl
44586 climsuselem1
44621 sumnnodd
44644 climleltrp
44690 dvbdfbdioolem2
44943 ioodvbdlimc1lem1
44945 ioodvbdlimc1lem2
44946 ioodvbdlimc2lem
44948 dvnmul
44957 iblspltprt
44987 itgspltprt
44993 itgiccshift
44994 itgperiod
44995 stoweidlem1
45015 stoweidlem11
45025 stoweidlem14
45028 stoweidlem26
45040 stoweidlem44
45058 stirlinglem11
45098 fourierdlem10
45131 fourierdlem11
45132 fourierdlem15
45136 fourierdlem30
45151 fourierdlem42
45163 fourierdlem68
45188 fourierdlem79
45199 fourierdlem92
45212 sge0xaddlem1
45447 carageniuncllem2
45536 hoidmv1lelem1
45605 ovolval5lem1
45666 smfmullem1
45805 |