HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfn0 Structured version   Visualization version   GIF version

Theorem lnfn0 31568
Description: The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfn0 (𝑇 ∈ LinFn → (𝑇‘0) = 0)

Proof of Theorem lnfn0
StepHypRef Expression
1 fveq1 6890 . . 3 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘0) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘0))
21eqeq1d 2733 . 2 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇‘0) = 0 ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘0) = 0))
3 0lnfn 31506 . . . 4 ( ℋ × {0}) ∈ LinFn
43elimel 4597 . . 3 if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn
54lnfn0i 31563 . 2 (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘0) = 0
62, 5dedth 4586 1 (𝑇 ∈ LinFn → (𝑇‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  ifcif 4528  {csn 4628   × cxp 5674  cfv 6543  0cc0 11114  chba 30440  0c0v 30445  LinFnclf 30475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-hilex 30520  ax-hfvadd 30521  ax-hv0cl 30524  ax-hvaddid 30525  ax-hfvmul 30526  ax-hvmulid 30527
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-sub 11451  df-lnfn 31369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator