| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnmul | Structured version Visualization version GIF version | ||
| Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnmul | ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵))) | |
| 2 | fveq1 6839 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘𝐵) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)) | |
| 3 | 2 | oveq2d 7385 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝐴 · (𝑇‘𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))) |
| 4 | 1, 3 | eqeq12d 2745 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵)) ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))) |
| 5 | 4 | imbi2d 340 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))))) |
| 6 | 0lnfn 31964 | . . . . 5 ⊢ ( ℋ × {0}) ∈ LinFn | |
| 7 | 6 | elimel 4554 | . . . 4 ⊢ if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn |
| 8 | 7 | lnfnmuli 32023 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))) |
| 9 | 5, 8 | dedth 4543 | . 2 ⊢ (𝑇 ∈ LinFn → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵)))) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 {csn 4585 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 ℋchba 30898 ·ℎ csm 30900 LinFnclf 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30978 ax-hfvadd 30979 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-lnfn 31827 |
| This theorem is referenced by: kbass4 32098 |
| Copyright terms: Public domain | W3C validator |