Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfnmul | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnmul | ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6716 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵))) | |
2 | fveq1 6716 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘𝐵) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)) | |
3 | 2 | oveq2d 7229 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝐴 · (𝑇‘𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))) |
4 | 1, 3 | eqeq12d 2753 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵)) ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))) |
5 | 4 | imbi2d 344 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))))) |
6 | 0lnfn 30066 | . . . . 5 ⊢ ( ℋ × {0}) ∈ LinFn | |
7 | 6 | elimel 4508 | . . . 4 ⊢ if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn |
8 | 7 | lnfnmuli 30125 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))) |
9 | 5, 8 | dedth 4497 | . 2 ⊢ (𝑇 ∈ LinFn → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵)))) |
10 | 9 | 3impib 1118 | 1 ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ifcif 4439 {csn 4541 × cxp 5549 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 · cmul 10734 ℋchba 29000 ·ℎ csm 29002 LinFnclf 29035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-hilex 29080 ax-hfvadd 29081 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-lnfn 29929 |
This theorem is referenced by: kbass4 30200 |
Copyright terms: Public domain | W3C validator |