Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotafvawN | Structured version Visualization version GIF version |
Description: Version of cdleme46fvaw 38077 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrniotaval.l | ⊢ ≤ = (le‘𝐾) |
ltrniotaval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrniotaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrniotaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ltrniotaval.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
ltrniotafvawN | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | ltrniotaval.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | eqid 2758 | . 2 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2758 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | ltrniotaval.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | ltrniotaval.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | eqid 2758 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) | |
8 | eqid 2758 | . 2 ⊢ ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
9 | eqid 2758 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
10 | eqid 2758 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) | |
11 | ltrniotaval.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | ltrniotaval.f | . 2 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg1fvawlemN 38149 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ⦋csb 3805 ifcif 4420 class class class wbr 5032 ↦ cmpt 5112 ‘cfv 6335 ℩crio 7107 (class class class)co 7150 Basecbs 16541 lecple 16630 joincjn 17620 meetcmee 17621 Atomscatm 36839 HLchlt 36926 LHypclh 37560 LTrncltrn 37677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-riotaBAD 36529 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-undef 7949 df-map 8418 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-llines 37074 df-lplanes 37075 df-lvols 37076 df-lines 37077 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-lhyp 37564 df-laut 37565 df-ldil 37680 df-ltrn 37681 df-trl 37735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |