Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotacl | Structured version Visualization version GIF version |
Description: Version of cdleme50ltrn 38578 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 17-Apr-2013.) |
Ref | Expression |
---|---|
ltrniotaval.l | ⊢ ≤ = (le‘𝐾) |
ltrniotaval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrniotaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrniotaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ltrniotaval.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
ltrniotacl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | ltrniotaval.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | eqid 2739 | . 2 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2739 | . 2 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | ltrniotaval.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | ltrniotaval.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | eqid 2739 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊) | |
8 | eqid 2739 | . 2 ⊢ ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
9 | eqid 2739 | . 2 ⊢ ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))) | |
10 | eqid 2739 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠(join‘𝐾)(𝑥(meet‘𝐾)𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃(join‘𝐾)𝑄), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃(join‘𝐾)𝑄)) → 𝑦 = ((𝑃(join‘𝐾)𝑄)(meet‘𝐾)(((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊)))(join‘𝐾)((𝑠(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡(join‘𝐾)((𝑃(join‘𝐾)𝑄)(meet‘𝐾)𝑊))(meet‘𝐾)(𝑄(join‘𝐾)((𝑃(join‘𝐾)𝑡)(meet‘𝐾)𝑊))))(join‘𝐾)(𝑥(meet‘𝐾)𝑊)))), 𝑥)) | |
11 | ltrniotaval.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | ltrniotaval.f | . 2 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg1ltrnlem 38595 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ⦋csb 3833 ifcif 4460 class class class wbr 5075 ↦ cmpt 5158 ‘cfv 6437 ℩crio 7240 (class class class)co 7284 Basecbs 16921 lecple 16978 joincjn 18038 meetcmee 18039 Atomscatm 37284 HLchlt 37371 LHypclh 38005 LTrncltrn 38122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-riotaBAD 36974 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-iin 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-undef 8098 df-map 8626 df-proset 18022 df-poset 18040 df-plt 18057 df-lub 18073 df-glb 18074 df-join 18075 df-meet 18076 df-p0 18152 df-p1 18153 df-lat 18159 df-clat 18226 df-oposet 37197 df-ol 37199 df-oml 37200 df-covers 37287 df-ats 37288 df-atl 37319 df-cvlat 37343 df-hlat 37372 df-llines 37519 df-lplanes 37520 df-lvols 37521 df-lines 37522 df-psubsp 37524 df-pmap 37525 df-padd 37817 df-lhyp 38009 df-laut 38010 df-ldil 38125 df-ltrn 38126 df-trl 38180 |
This theorem is referenced by: ltrniotacnvval 38603 ltrniotaidvalN 38604 ltrniotavalbN 38605 cdlemg1ci2 38607 cdlemki 38862 cdlemkj 38884 cdlemm10N 39139 dicssdvh 39207 dicvaddcl 39211 dicvscacl 39212 dicn0 39213 diclspsn 39215 cdlemn2 39216 cdlemn2a 39217 cdlemn3 39218 cdlemn4 39219 cdlemn4a 39220 cdlemn6 39223 cdlemn8 39225 cdlemn9 39226 cdlemn11a 39228 dihordlem7b 39236 dihopelvalcpre 39269 dih1 39307 dihmeetlem1N 39311 dihglblem5apreN 39312 dihglbcpreN 39321 dihmeetlem4preN 39327 dihmeetlem13N 39340 dih1dimatlem0 39349 dihatlat 39355 dihatexv 39359 dihjatcclem3 39441 dihjatcclem4 39442 |
Copyright terms: Public domain | W3C validator |