Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotacl Structured version   Visualization version   GIF version

Theorem ltrniotacl 39536
Description: Version of cdleme50ltrn 39514 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 17-Apr-2013.)
Hypotheses
Ref Expression
ltrniotaval.l ≀ = (leβ€˜πΎ)
ltrniotaval.a 𝐴 = (Atomsβ€˜πΎ)
ltrniotaval.h 𝐻 = (LHypβ€˜πΎ)
ltrniotaval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
ltrniotaval.f 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
Assertion
Ref Expression
ltrniotacl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ≀ ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,π‘Š
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotacl
Dummy variables 𝑠 𝑑 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 ltrniotaval.l . 2 ≀ = (leβ€˜πΎ)
3 eqid 2732 . 2 (joinβ€˜πΎ) = (joinβ€˜πΎ)
4 eqid 2732 . 2 (meetβ€˜πΎ) = (meetβ€˜πΎ)
5 ltrniotaval.a . 2 𝐴 = (Atomsβ€˜πΎ)
6 ltrniotaval.h . 2 𝐻 = (LHypβ€˜πΎ)
7 eqid 2732 . 2 ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š) = ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š)
8 eqid 2732 . 2 ((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))) = ((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))
9 eqid 2732 . 2 ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)(((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))(joinβ€˜πΎ)((𝑠(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))) = ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)(((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))(joinβ€˜πΎ)((𝑠(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))
10 eqid 2732 . 2 (π‘₯ ∈ (Baseβ€˜πΎ) ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ (Baseβ€˜πΎ)βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠(joinβ€˜πΎ)(π‘₯(meetβ€˜πΎ)π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃(joinβ€˜πΎ)𝑄), (℩𝑦 ∈ (Baseβ€˜πΎ)βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃(joinβ€˜πΎ)𝑄)) β†’ 𝑦 = ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)(((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))(joinβ€˜πΎ)((𝑠(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))))), ⦋𝑠 / π‘‘β¦Œ((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))))(joinβ€˜πΎ)(π‘₯(meetβ€˜πΎ)π‘Š)))), π‘₯)) = (π‘₯ ∈ (Baseβ€˜πΎ) ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ (Baseβ€˜πΎ)βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠(joinβ€˜πΎ)(π‘₯(meetβ€˜πΎ)π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃(joinβ€˜πΎ)𝑄), (℩𝑦 ∈ (Baseβ€˜πΎ)βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃(joinβ€˜πΎ)𝑄)) β†’ 𝑦 = ((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)(((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š)))(joinβ€˜πΎ)((𝑠(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))))), ⦋𝑠 / π‘‘β¦Œ((𝑑(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑄)(meetβ€˜πΎ)π‘Š))(meetβ€˜πΎ)(𝑄(joinβ€˜πΎ)((𝑃(joinβ€˜πΎ)𝑑)(meetβ€˜πΎ)π‘Š))))(joinβ€˜πΎ)(π‘₯(meetβ€˜πΎ)π‘Š)))), π‘₯))
11 ltrniotaval.t . 2 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
12 ltrniotaval.f . 2 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemg1ltrnlem 39531 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  β¦‹csb 3893  ifcif 4528   class class class wbr 5148   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7366  (class class class)co 7411  Basecbs 17146  lecple 17206  joincjn 18266  meetcmee 18267  Atomscatm 38219  HLchlt 38306  LHypclh 38941  LTrncltrn 39058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-riotaBAD 37909
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38132  df-ol 38134  df-oml 38135  df-covers 38222  df-ats 38223  df-atl 38254  df-cvlat 38278  df-hlat 38307  df-llines 38455  df-lplanes 38456  df-lvols 38457  df-lines 38458  df-psubsp 38460  df-pmap 38461  df-padd 38753  df-lhyp 38945  df-laut 38946  df-ldil 39061  df-ltrn 39062  df-trl 39116
This theorem is referenced by:  ltrniotacnvval  39539  ltrniotaidvalN  39540  ltrniotavalbN  39541  cdlemg1ci2  39543  cdlemki  39798  cdlemkj  39820  cdlemm10N  40075  dicssdvh  40143  dicvaddcl  40147  dicvscacl  40148  dicn0  40149  diclspsn  40151  cdlemn2  40152  cdlemn2a  40153  cdlemn3  40154  cdlemn4  40155  cdlemn4a  40156  cdlemn6  40159  cdlemn8  40161  cdlemn9  40162  cdlemn11a  40164  dihordlem7b  40172  dihopelvalcpre  40205  dih1  40243  dihmeetlem1N  40247  dihglblem5apreN  40248  dihglbcpreN  40257  dihmeetlem4preN  40263  dihmeetlem13N  40276  dih1dimatlem0  40285  dihatlat  40291  dihatexv  40295  dihjatcclem3  40377  dihjatcclem4  40378
  Copyright terms: Public domain W3C validator