MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem1 Structured version   Visualization version   GIF version

Theorem 01sqrexlem1 15196
Description: Lemma for 01sqrex 15203. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
01sqrexlem1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Distinct variable groups:   𝑦,𝑆   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem 01sqrexlem1
StepHypRef Expression
1 oveq1 7419 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
21breq1d 5158 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
3 01sqrexlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
42, 3elrab2 3686 . . 3 (𝑦𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴))
5 simprr 770 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴)
6 simplr 766 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1)
7 rpre 12989 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
87ad2antrl 725 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ)
98resqcld 14097 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ)
10 rpre 12989 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110ad2antrr 723 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ)
12 1re 11221 . . . . . . . . 9 1 ∈ ℝ
13 letr 11315 . . . . . . . . 9 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
1412, 13mp3an3 1449 . . . . . . . 8 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
159, 11, 14syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
165, 6, 15mp2and 696 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1)
17 sq1 14166 . . . . . 6 (1↑2) = 1
1816, 17breqtrrdi 5190 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2))
19 rpge0 12994 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
2019ad2antrl 725 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦)
21 0le1 11744 . . . . . . 7 0 ≤ 1
22 le2sq 14106 . . . . . . 7 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2312, 21, 22mpanr12 702 . . . . . 6 ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
248, 20, 23syl2anc 583 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2518, 24mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1)
2625ex 412 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1))
274, 26biimtrid 241 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑦𝑆𝑦 ≤ 1))
2827ralrimiv 3144 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431   class class class wbr 5148  (class class class)co 7412  supcsup 9441  cr 11115  0cc0 11116  1c1 11117   < clt 11255  cle 11256  2c2 12274  +crp 12981  cexp 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-seq 13974  df-exp 14035
This theorem is referenced by:  01sqrexlem3  15198  01sqrexlem4  15199
  Copyright terms: Public domain W3C validator