| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrexlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 01sqrex 15289. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
| Ref | Expression |
|---|---|
| 01sqrexlem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7439 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
| 2 | 1 | breq1d 5152 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴)) |
| 3 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
| 4 | 2, 3 | elrab2 3694 | . . 3 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) |
| 5 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1) | |
| 7 | rpre 13044 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
| 8 | 7 | ad2antrl 728 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ) |
| 9 | 8 | resqcld 14166 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ) |
| 10 | rpre 13044 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 11 | 10 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ) |
| 12 | 1re 11262 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | letr 11356 | . . . . . . . . 9 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) | |
| 14 | 12, 13 | mp3an3 1451 | . . . . . . . 8 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 15 | 9, 11, 14 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 16 | 5, 6, 15 | mp2and 699 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1) |
| 17 | sq1 14235 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 18 | 16, 17 | breqtrrdi 5184 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2)) |
| 19 | rpge0 13049 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ → 0 ≤ 𝑦) | |
| 20 | 19 | ad2antrl 728 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦) |
| 21 | 0le1 11787 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 22 | le2sq 14175 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) | |
| 23 | 12, 21, 22 | mpanr12 705 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 24 | 8, 20, 23 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 25 | 18, 24 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1)) |
| 27 | 4, 26 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑦 ∈ 𝑆 → 𝑦 ≤ 1)) |
| 28 | 27 | ralrimiv 3144 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 class class class wbr 5142 (class class class)co 7432 supcsup 9481 ℝcr 11155 0cc0 11156 1c1 11157 < clt 11296 ≤ cle 11297 2c2 12322 ℝ+crp 13035 ↑cexp 14103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-seq 14044 df-exp 14104 |
| This theorem is referenced by: 01sqrexlem3 15284 01sqrexlem4 15285 |
| Copyright terms: Public domain | W3C validator |