![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrexlem1 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15196. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
01sqrexlem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
2 | 1 | breq1d 5159 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴)) |
3 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
4 | 2, 3 | elrab2 3687 | . . 3 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) |
5 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴) | |
6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1) | |
7 | rpre 12982 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
8 | 7 | ad2antrl 727 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ) |
9 | 8 | resqcld 14090 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ) |
10 | rpre 12982 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
11 | 10 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ) |
12 | 1re 11214 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | letr 11308 | . . . . . . . . 9 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) | |
14 | 12, 13 | mp3an3 1451 | . . . . . . . 8 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
15 | 9, 11, 14 | syl2anc 585 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
16 | 5, 6, 15 | mp2and 698 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1) |
17 | sq1 14159 | . . . . . 6 ⊢ (1↑2) = 1 | |
18 | 16, 17 | breqtrrdi 5191 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2)) |
19 | rpge0 12987 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ → 0 ≤ 𝑦) | |
20 | 19 | ad2antrl 727 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦) |
21 | 0le1 11737 | . . . . . . 7 ⊢ 0 ≤ 1 | |
22 | le2sq 14099 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) | |
23 | 12, 21, 22 | mpanr12 704 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
24 | 8, 20, 23 | syl2anc 585 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
25 | 18, 24 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1) |
26 | 25 | ex 414 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1)) |
27 | 4, 26 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑦 ∈ 𝑆 → 𝑦 ≤ 1)) |
28 | 27 | ralrimiv 3146 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 class class class wbr 5149 (class class class)co 7409 supcsup 9435 ℝcr 11109 0cc0 11110 1c1 11111 < clt 11248 ≤ cle 11249 2c2 12267 ℝ+crp 12974 ↑cexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 |
This theorem is referenced by: 01sqrexlem3 15191 01sqrexlem4 15192 |
Copyright terms: Public domain | W3C validator |