MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem1 Structured version   Visualization version   GIF version

Theorem 01sqrexlem1 15219
Description: Lemma for 01sqrex 15226. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
01sqrexlem1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Distinct variable groups:   𝑦,𝑆   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem 01sqrexlem1
StepHypRef Expression
1 oveq1 7422 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
21breq1d 5153 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
3 01sqrexlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
42, 3elrab2 3678 . . 3 (𝑦𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴))
5 simprr 771 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴)
6 simplr 767 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1)
7 rpre 13012 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
87ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ)
98resqcld 14119 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ)
10 rpre 13012 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110ad2antrr 724 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ)
12 1re 11242 . . . . . . . . 9 1 ∈ ℝ
13 letr 11336 . . . . . . . . 9 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
1412, 13mp3an3 1446 . . . . . . . 8 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
159, 11, 14syl2anc 582 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
165, 6, 15mp2and 697 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1)
17 sq1 14188 . . . . . 6 (1↑2) = 1
1816, 17breqtrrdi 5185 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2))
19 rpge0 13017 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
2019ad2antrl 726 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦)
21 0le1 11765 . . . . . . 7 0 ≤ 1
22 le2sq 14128 . . . . . . 7 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2312, 21, 22mpanr12 703 . . . . . 6 ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
248, 20, 23syl2anc 582 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2518, 24mpbird 256 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1)
2625ex 411 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1))
274, 26biimtrid 241 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑦𝑆𝑦 ≤ 1))
2827ralrimiv 3135 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  {crab 3419   class class class wbr 5143  (class class class)co 7415  supcsup 9461  cr 11135  0cc0 11136  1c1 11137   < clt 11276  cle 11277  2c2 12295  +crp 13004  cexp 14056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-seq 13997  df-exp 14057
This theorem is referenced by:  01sqrexlem3  15221  01sqrexlem4  15222
  Copyright terms: Public domain W3C validator