| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrexlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 01sqrex 15191. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
| Ref | Expression |
|---|---|
| 01sqrexlem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
| 2 | 1 | breq1d 5112 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴)) |
| 3 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
| 4 | 2, 3 | elrab2 3659 | . . 3 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) |
| 5 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1) | |
| 7 | rpre 12936 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
| 8 | 7 | ad2antrl 728 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ) |
| 9 | 8 | resqcld 14066 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ) |
| 10 | rpre 12936 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 11 | 10 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ) |
| 12 | 1re 11150 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | letr 11244 | . . . . . . . . 9 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) | |
| 14 | 12, 13 | mp3an3 1452 | . . . . . . . 8 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 15 | 9, 11, 14 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 16 | 5, 6, 15 | mp2and 699 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1) |
| 17 | sq1 14136 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 18 | 16, 17 | breqtrrdi 5144 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2)) |
| 19 | rpge0 12941 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ → 0 ≤ 𝑦) | |
| 20 | 19 | ad2antrl 728 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦) |
| 21 | 0le1 11677 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 22 | le2sq 14075 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) | |
| 23 | 12, 21, 22 | mpanr12 705 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 24 | 8, 20, 23 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 25 | 18, 24 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1)) |
| 27 | 4, 26 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑦 ∈ 𝑆 → 𝑦 ≤ 1)) |
| 28 | 27 | ralrimiv 3124 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 class class class wbr 5102 (class class class)co 7369 supcsup 9367 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ≤ cle 11185 2c2 12217 ℝ+crp 12927 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: 01sqrexlem3 15186 01sqrexlem4 15187 |
| Copyright terms: Public domain | W3C validator |