MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem1 Structured version   Visualization version   GIF version

Theorem 01sqrexlem1 15144
Description: Lemma for 01sqrex 15151. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
01sqrexlem1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Distinct variable groups:   𝑦,𝑆   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem 01sqrexlem1
StepHypRef Expression
1 oveq1 7348 . . . . 5 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
21breq1d 5096 . . . 4 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
3 01sqrexlem1.1 . . . 4 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
42, 3elrab2 3645 . . 3 (𝑦𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴))
5 simprr 772 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴)
6 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1)
7 rpre 12894 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
87ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ)
98resqcld 14027 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ)
10 rpre 12894 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ)
12 1re 11107 . . . . . . . . 9 1 ∈ ℝ
13 letr 11202 . . . . . . . . 9 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
1412, 13mp3an3 1452 . . . . . . . 8 (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
159, 11, 14syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴𝐴 ≤ 1) → (𝑦↑2) ≤ 1))
165, 6, 15mp2and 699 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1)
17 sq1 14097 . . . . . 6 (1↑2) = 1
1816, 17breqtrrdi 5128 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2))
19 rpge0 12899 . . . . . . 7 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
2019ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦)
21 0le1 11635 . . . . . . 7 0 ≤ 1
22 le2sq 14036 . . . . . . 7 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2312, 21, 22mpanr12 705 . . . . . 6 ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
248, 20, 23syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2)))
2518, 24mpbird 257 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1)
2625ex 412 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1))
274, 26biimtrid 242 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑦𝑆𝑦 ≤ 1))
2827ralrimiv 3123 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑦𝑆 𝑦 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395   class class class wbr 5086  (class class class)co 7341  supcsup 9319  cr 11000  0cc0 11001  1c1 11002   < clt 11141  cle 11142  2c2 12175  +crp 12885  cexp 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964
This theorem is referenced by:  01sqrexlem3  15146  01sqrexlem4  15147
  Copyright terms: Public domain W3C validator