| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrexlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 01sqrex 15163. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
| Ref | Expression |
|---|---|
| 01sqrexlem1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
| 2 | 1 | breq1d 5105 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴)) |
| 3 | 01sqrexlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
| 4 | 2, 3 | elrab2 3646 | . . 3 ⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) |
| 5 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 𝐴) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ≤ 1) | |
| 7 | rpre 12905 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ) | |
| 8 | 7 | ad2antrl 728 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ∈ ℝ) |
| 9 | 8 | resqcld 14039 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ∈ ℝ) |
| 10 | rpre 12905 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 11 | 10 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝐴 ∈ ℝ) |
| 12 | 1re 11123 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | letr 11218 | . . . . . . . . 9 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) | |
| 14 | 12, 13 | mp3an3 1452 | . . . . . . . 8 ⊢ (((𝑦↑2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 15 | 9, 11, 14 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (((𝑦↑2) ≤ 𝐴 ∧ 𝐴 ≤ 1) → (𝑦↑2) ≤ 1)) |
| 16 | 5, 6, 15 | mp2and 699 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ 1) |
| 17 | sq1 14109 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 18 | 16, 17 | breqtrrdi 5137 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦↑2) ≤ (1↑2)) |
| 19 | rpge0 12910 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ+ → 0 ≤ 𝑦) | |
| 20 | 19 | ad2antrl 728 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 0 ≤ 𝑦) |
| 21 | 0le1 11651 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 22 | le2sq 14048 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) | |
| 23 | 12, 21, 22 | mpanr12 705 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 24 | 8, 20, 23 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → (𝑦 ≤ 1 ↔ (𝑦↑2) ≤ (1↑2))) |
| 25 | 18, 24 | mpbird 257 | . . . 4 ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ∧ (𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴)) → 𝑦 ≤ 1) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑦 ∈ ℝ+ ∧ (𝑦↑2) ≤ 𝐴) → 𝑦 ≤ 1)) |
| 27 | 4, 26 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑦 ∈ 𝑆 → 𝑦 ≤ 1)) |
| 28 | 27 | ralrimiv 3124 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 class class class wbr 5095 (class class class)co 7355 supcsup 9335 ℝcr 11016 0cc0 11017 1c1 11018 < clt 11157 ≤ cle 11158 2c2 12191 ℝ+crp 12896 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 |
| This theorem is referenced by: 01sqrexlem3 15158 01sqrexlem4 15159 |
| Copyright terms: Public domain | W3C validator |