MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprm Structured version   Visualization version   GIF version

Theorem oddprm 16857
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 4154 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 prmz 16722 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ)
4 eldifsni 4815 . . . . . . 7 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2)
54necomd 3002 . . . . . 6 (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁)
65neneqd 2951 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁)
7 2z 12675 . . . . . . 7 2 ∈ ℤ
8 uzid 12918 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 dvdsprm 16750 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
119, 1, 10sylancr 586 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
126, 11mtbird 325 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
13 1z 12673 . . . . 5 1 ∈ ℤ
14 n2dvds1 16416 . . . . 5 ¬ 2 ∥ 1
15 omoe 16412 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
1613, 14, 15mpanr12 704 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
173, 12, 16syl2anc 583 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1))
18 prmnn 16721 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
19 nnm1nn0 12594 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
201, 18, 193syl 18 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0)
21 nn0z 12664 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
22 evend2 16405 . . . 4 ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2320, 21, 223syl 18 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2417, 23mpbid 232 . 2 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ)
25 prmuz2 16743 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
26 uz2m1nn 12988 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
27 nngt0 12324 . . . 4 ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1))
28 nnre 12300 . . . . 5 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ)
29 2rp 13062 . . . . . 6 2 ∈ ℝ+
3029a1i 11 . . . . 5 ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+)
3128, 30gt0divd 13136 . . . 4 ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2)))
3227, 31mpbid 232 . . 3 ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2))
331, 25, 26, 324syl 19 . 2 (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2))
34 elnnz 12649 . 2 (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2)))
3524, 33, 34sylanbrc 582 1 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719
This theorem is referenced by:  nnoddn2prm  16858  4sqlem19  17010  lgslem1  27359  lgslem4  27362  lgsval2lem  27369  lgsvalmod  27378  lgsmod  27385  lgsdirprm  27393  lgsne0  27397  lgsqrlem1  27408  lgsqrlem2  27409  lgsqrlem3  27410  lgsqrlem4  27411  gausslemma2dlem4  27431  lgseisenlem1  27437  lgseisenlem2  27438  lgseisenlem4  27440  lgseisen  27441  m1lgs  27450  2lgslem2  27457  fmtnoprmfac2  47441
  Copyright terms: Public domain W3C validator