MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprm Structured version   Visualization version   GIF version

Theorem oddprm 16828
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 4106 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 prmz 16692 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ)
4 eldifsni 4766 . . . . . . 7 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2)
54necomd 2987 . . . . . 6 (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁)
65neneqd 2937 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁)
7 2z 12622 . . . . . . 7 2 ∈ ℤ
8 uzid 12865 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 dvdsprm 16720 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
119, 1, 10sylancr 587 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
126, 11mtbird 325 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
13 1z 12620 . . . . 5 1 ∈ ℤ
14 n2dvds1 16385 . . . . 5 ¬ 2 ∥ 1
15 omoe 16381 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
1613, 14, 15mpanr12 705 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
173, 12, 16syl2anc 584 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1))
18 prmnn 16691 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
19 nnm1nn0 12540 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
201, 18, 193syl 18 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0)
21 nn0z 12611 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
22 evend2 16374 . . . 4 ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2320, 21, 223syl 18 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2417, 23mpbid 232 . 2 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ)
25 prmuz2 16713 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
26 uz2m1nn 12937 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
27 nngt0 12269 . . . 4 ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1))
28 nnre 12245 . . . . 5 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ)
29 2rp 13011 . . . . . 6 2 ∈ ℝ+
3029a1i 11 . . . . 5 ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+)
3128, 30gt0divd 13086 . . . 4 ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2)))
3227, 31mpbid 232 . . 3 ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2))
331, 25, 26, 324syl 19 . 2 (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2))
34 elnnz 12596 . 2 (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2)))
3524, 33, 34sylanbrc 583 1 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  {csn 4601   class class class wbr 5119  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   < clt 11267  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  cuz 12850  +crp 13006  cdvds 16270  cprime 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-prm 16689
This theorem is referenced by:  nnoddn2prm  16829  4sqlem19  16981  lgslem1  27258  lgslem4  27261  lgsval2lem  27268  lgsvalmod  27277  lgsmod  27284  lgsdirprm  27292  lgsne0  27296  lgsqrlem1  27307  lgsqrlem2  27308  lgsqrlem3  27309  lgsqrlem4  27310  gausslemma2dlem4  27330  lgseisenlem1  27336  lgseisenlem2  27337  lgseisenlem4  27339  lgseisen  27340  m1lgs  27349  2lgslem2  27356  fmtnoprmfac2  47529
  Copyright terms: Public domain W3C validator