| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oddprm | Structured version Visualization version GIF version | ||
| Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| oddprm | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 4106 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ) | |
| 2 | prmz 16694 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ) |
| 4 | eldifsni 4766 | . . . . . . 7 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2) | |
| 5 | 4 | necomd 2987 | . . . . . 6 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁) |
| 6 | 5 | neneqd 2937 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁) |
| 7 | 2z 12624 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 8 | uzid 12867 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | dvdsprm 16722 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) | |
| 11 | 9, 1, 10 | sylancr 587 | . . . . 5 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁)) |
| 12 | 6, 11 | mtbird 325 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁) |
| 13 | 1z 12622 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 14 | n2dvds1 16387 | . . . . 5 ⊢ ¬ 2 ∥ 1 | |
| 15 | omoe 16383 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1)) | |
| 16 | 13, 14, 15 | mpanr12 705 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1)) |
| 17 | 3, 12, 16 | syl2anc 584 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1)) |
| 18 | prmnn 16693 | . . . . 5 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℕ) | |
| 19 | nnm1nn0 12542 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 20 | 1, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0) |
| 21 | nn0z 12613 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) | |
| 22 | evend2 16376 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
| 23 | 20, 21, 22 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ)) |
| 24 | 17, 23 | mpbid 232 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ) |
| 25 | prmuz2 16715 | . . 3 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ≥‘2)) | |
| 26 | uz2m1nn 12939 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
| 27 | nngt0 12271 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1)) | |
| 28 | nnre 12247 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ) | |
| 29 | 2rp 13013 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+) |
| 31 | 28, 30 | gt0divd 13088 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) |
| 32 | 27, 31 | mpbid 232 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2)) |
| 33 | 1, 25, 26, 32 | 4syl 19 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2)) |
| 34 | elnnz 12598 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
| 35 | 24, 33, 34 | sylanbrc 583 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 < clt 11269 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 ∥ cdvds 16272 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: nnoddn2prm 16831 4sqlem19 16983 lgslem1 27260 lgslem4 27263 lgsval2lem 27270 lgsvalmod 27279 lgsmod 27286 lgsdirprm 27294 lgsne0 27298 lgsqrlem1 27309 lgsqrlem2 27310 lgsqrlem3 27311 lgsqrlem4 27312 gausslemma2dlem4 27332 lgseisenlem1 27338 lgseisenlem2 27339 lgseisenlem4 27341 lgseisen 27342 m1lgs 27351 2lgslem2 27358 fmtnoprmfac2 47581 |
| Copyright terms: Public domain | W3C validator |