MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddprm Structured version   Visualization version   GIF version

Theorem oddprm 16830
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
oddprm (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)

Proof of Theorem oddprm
StepHypRef Expression
1 eldifi 4106 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℙ)
2 prmz 16694 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ ℤ)
4 eldifsni 4766 . . . . . . 7 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ≠ 2)
54necomd 2987 . . . . . 6 (𝑁 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑁)
65neneqd 2937 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 = 𝑁)
7 2z 12624 . . . . . . 7 2 ∈ ℤ
8 uzid 12867 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
10 dvdsprm 16722 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℙ) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
119, 1, 10sylancr 587 . . . . 5 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ 𝑁 ↔ 2 = 𝑁))
126, 11mtbird 325 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
13 1z 12622 . . . . 5 1 ∈ ℤ
14 n2dvds1 16387 . . . . 5 ¬ 2 ∥ 1
15 omoe 16383 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
1613, 14, 15mpanr12 705 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → 2 ∥ (𝑁 − 1))
173, 12, 16syl2anc 584 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → 2 ∥ (𝑁 − 1))
18 prmnn 16693 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
19 nnm1nn0 12542 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
201, 18, 193syl 18 . . . 4 (𝑁 ∈ (ℙ ∖ {2}) → (𝑁 − 1) ∈ ℕ0)
21 nn0z 12613 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
22 evend2 16376 . . . 4 ((𝑁 − 1) ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2320, 21, 223syl 18 . . 3 (𝑁 ∈ (ℙ ∖ {2}) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2417, 23mpbid 232 . 2 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℤ)
25 prmuz2 16715 . . 3 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
26 uz2m1nn 12939 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
27 nngt0 12271 . . . 4 ((𝑁 − 1) ∈ ℕ → 0 < (𝑁 − 1))
28 nnre 12247 . . . . 5 ((𝑁 − 1) ∈ ℕ → (𝑁 − 1) ∈ ℝ)
29 2rp 13013 . . . . . 6 2 ∈ ℝ+
3029a1i 11 . . . . 5 ((𝑁 − 1) ∈ ℕ → 2 ∈ ℝ+)
3128, 30gt0divd 13088 . . . 4 ((𝑁 − 1) ∈ ℕ → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2)))
3227, 31mpbid 232 . . 3 ((𝑁 − 1) ∈ ℕ → 0 < ((𝑁 − 1) / 2))
331, 25, 26, 324syl 19 . 2 (𝑁 ∈ (ℙ ∖ {2}) → 0 < ((𝑁 − 1) / 2))
34 elnnz 12598 . 2 (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2)))
3524, 33, 34sylanbrc 583 1 (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3923  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  +crp 13008  cdvds 16272  cprime 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-prm 16691
This theorem is referenced by:  nnoddn2prm  16831  4sqlem19  16983  lgslem1  27260  lgslem4  27263  lgsval2lem  27270  lgsvalmod  27279  lgsmod  27286  lgsdirprm  27294  lgsne0  27298  lgsqrlem1  27309  lgsqrlem2  27310  lgsqrlem3  27311  lgsqrlem4  27312  gausslemma2dlem4  27332  lgseisenlem1  27338  lgseisenlem2  27339  lgseisenlem4  27341  lgseisen  27342  m1lgs  27351  2lgslem2  27358  fmtnoprmfac2  47581
  Copyright terms: Public domain W3C validator