![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pc1 | Structured version Visualization version GIF version |
Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pc1 | ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12589 | . . 3 ⊢ 1 ∈ ℤ | |
2 | ax-1ne0 11175 | . . 3 ⊢ 1 ≠ 0 | |
3 | eqid 2724 | . . . 4 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) | |
4 | 3 | pczpre 16779 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0)) → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
5 | 1, 2, 4 | mpanr12 702 | . 2 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
6 | prmuz2 16630 | . . 3 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
7 | eqid 2724 | . . 3 ⊢ 1 = 1 | |
8 | eqid 2724 | . . . 4 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} | |
9 | 8, 3 | pcpre1 16774 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
10 | 6, 7, 9 | sylancl 585 | . 2 ⊢ (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
11 | 5, 10 | eqtrd 2764 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 {crab 3424 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 supcsup 9431 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11245 2c2 12264 ℕ0cn0 12469 ℤcz 12555 ℤ≥cuz 12819 ↑cexp 14024 ∥ cdvds 16194 ℙcprime 16605 pCnt cpc 16768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-prm 16606 df-pc 16769 |
This theorem is referenced by: pcrec 16790 pcexp 16791 pcid 16805 pcmpt 16824 pcfac 16831 sylow1lem1 19508 mumullem2 27028 |
Copyright terms: Public domain | W3C validator |