MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc1 Structured version   Visualization version   GIF version

Theorem pc1 16817
Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pc1 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)

Proof of Theorem pc1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 1z 12616 . . 3 1 ∈ ℤ
2 ax-1ne0 11201 . . 3 1 ≠ 0
3 eqid 2727 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < )
43pczpre 16809 . . 3 ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0)) → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))
51, 2, 4mpanr12 704 . 2 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ))
6 prmuz2 16660 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
7 eqid 2727 . . 3 1 = 1
8 eqid 2727 . . . 4 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}
98, 3pcpre1 16804 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
106, 7, 9sylancl 585 . 2 (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 1}, ℝ, < ) = 0)
115, 10eqtrd 2767 1 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2935  {crab 3427   class class class wbr 5142  cfv 6542  (class class class)co 7414  supcsup 9457  cr 11131  0cc0 11132  1c1 11133   < clt 11272  2c2 12291  0cn0 12496  cz 12582  cuz 12846  cexp 14052  cdvds 16224  cprime 16635   pCnt cpc 16798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-prm 16636  df-pc 16799
This theorem is referenced by:  pcrec  16820  pcexp  16821  pcid  16835  pcmpt  16854  pcfac  16861  sylow1lem1  19546  mumullem2  27105
  Copyright terms: Public domain W3C validator