![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pc1 | Structured version Visualization version GIF version |
Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pc1 | ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12616 | . . 3 ⊢ 1 ∈ ℤ | |
2 | ax-1ne0 11201 | . . 3 ⊢ 1 ≠ 0 | |
3 | eqid 2727 | . . . 4 ⊢ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) | |
4 | 3 | pczpre 16809 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0)) → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
5 | 1, 2, 4 | mpanr12 704 | . 2 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < )) |
6 | prmuz2 16660 | . . 3 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
7 | eqid 2727 | . . 3 ⊢ 1 = 1 | |
8 | eqid 2727 | . . . 4 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1} | |
9 | 8, 3 | pcpre1 16804 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 1 = 1) → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
10 | 6, 7, 9 | sylancl 585 | . 2 ⊢ (𝑃 ∈ ℙ → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 1}, ℝ, < ) = 0) |
11 | 5, 10 | eqtrd 2767 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 supcsup 9457 ℝcr 11131 0cc0 11132 1c1 11133 < clt 11272 2c2 12291 ℕ0cn0 12496 ℤcz 12582 ℤ≥cuz 12846 ↑cexp 14052 ∥ cdvds 16224 ℙcprime 16635 pCnt cpc 16798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-rp 13001 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-gcd 16463 df-prm 16636 df-pc 16799 |
This theorem is referenced by: pcrec 16820 pcexp 16821 pcid 16835 pcmpt 16854 pcfac 16861 sylow1lem1 19546 mumullem2 27105 |
Copyright terms: Public domain | W3C validator |