MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosordlem Structured version   Visualization version   GIF version

Theorem cosordlem 26572
Description: Lemma for cosord 26573. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1 (𝜑𝐴 ∈ (0[,]π))
cosord.2 (𝜑𝐵 ∈ (0[,]π))
cosord.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
cosordlem (𝜑 → (cos‘𝐵) < (cos‘𝐴))

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7 (𝜑𝐵 ∈ (0[,]π))
2 0re 11263 . . . . . . . 8 0 ∈ ℝ
3 pire 26500 . . . . . . . 8 π ∈ ℝ
42, 3elicc2i 13453 . . . . . . 7 (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
51, 4sylib 218 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
65simp1d 1143 . . . . 5 (𝜑𝐵 ∈ ℝ)
76recnd 11289 . . . 4 (𝜑𝐵 ∈ ℂ)
8 cosord.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,]π))
92, 3elicc2i 13453 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
108, 9sylib 218 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
1110simp1d 1143 . . . . 5 (𝜑𝐴 ∈ ℝ)
1211recnd 11289 . . . 4 (𝜑𝐴 ∈ ℂ)
13 subcos 16211 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
147, 12, 13syl2anc 584 . . 3 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) = (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))))
15 2rp 13039 . . . 4 2 ∈ ℝ+
166, 11readdcld 11290 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ∈ ℝ)
1716rehalfcld 12513 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ ℝ)
1817resincld 16179 . . . . . 6 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ)
192a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2010simp2d 1144 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
21 cosord.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2219, 11, 6, 20, 21lelttrd 11419 . . . . . . . . . 10 (𝜑 → 0 < 𝐵)
236, 11, 22, 20addgtge0d 11837 . . . . . . . . 9 (𝜑 → 0 < (𝐵 + 𝐴))
24 2re 12340 . . . . . . . . . 10 2 ∈ ℝ
25 2pos 12369 . . . . . . . . . 10 0 < 2
26 divgt0 12136 . . . . . . . . . 10 ((((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵 + 𝐴) / 2))
2724, 25, 26mpanr12 705 . . . . . . . . 9 (((𝐵 + 𝐴) ∈ ℝ ∧ 0 < (𝐵 + 𝐴)) → 0 < ((𝐵 + 𝐴) / 2))
2816, 23, 27syl2anc 584 . . . . . . . 8 (𝜑 → 0 < ((𝐵 + 𝐴) / 2))
293a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
3011, 6, 6, 21ltadd2dd 11420 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐴) < (𝐵 + 𝐵))
3172timesd 12509 . . . . . . . . . . 11 (𝜑 → (2 · 𝐵) = (𝐵 + 𝐵))
3230, 31breqtrrd 5171 . . . . . . . . . 10 (𝜑 → (𝐵 + 𝐴) < (2 · 𝐵))
3324a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
3425a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 2)
35 ltdivmul 12143 . . . . . . . . . . 11 (((𝐵 + 𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3616, 6, 33, 34, 35syl112anc 1376 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐴) / 2) < 𝐵 ↔ (𝐵 + 𝐴) < (2 · 𝐵)))
3732, 36mpbird 257 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝐴) / 2) < 𝐵)
385simp3d 1145 . . . . . . . . 9 (𝜑𝐵 ≤ π)
3917, 6, 29, 37, 38ltletrd 11421 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐴) / 2) < π)
40 0xr 11308 . . . . . . . . 9 0 ∈ ℝ*
413rexri 11319 . . . . . . . . 9 π ∈ ℝ*
42 elioo2 13428 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π)))
4340, 41, 42mp2an 692 . . . . . . . 8 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵 + 𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵 + 𝐴) / 2) ∧ ((𝐵 + 𝐴) / 2) < π))
4417, 28, 39, 43syl3anbrc 1344 . . . . . . 7 (𝜑 → ((𝐵 + 𝐴) / 2) ∈ (0(,)π))
45 sinq12gt0 26549 . . . . . . 7 (((𝐵 + 𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4644, 45syl 17 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵 + 𝐴) / 2)))
4718, 46elrpd 13074 . . . . 5 (𝜑 → (sin‘((𝐵 + 𝐴) / 2)) ∈ ℝ+)
486, 11resubcld 11691 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4948rehalfcld 12513 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ ℝ)
5049resincld 16179 . . . . . 6 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ)
5111, 6posdifd 11850 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5221, 51mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
53 divgt0 12136 . . . . . . . . . 10 ((((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝐵𝐴) / 2))
5424, 25, 53mpanr12 705 . . . . . . . . 9 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → 0 < ((𝐵𝐴) / 2))
5548, 52, 54syl2anc 584 . . . . . . . 8 (𝜑 → 0 < ((𝐵𝐴) / 2))
56 rehalfcl 12492 . . . . . . . . . 10 (π ∈ ℝ → (π / 2) ∈ ℝ)
573, 56mp1i 13 . . . . . . . . 9 (𝜑 → (π / 2) ∈ ℝ)
586, 11subge02d 11855 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝐴 ↔ (𝐵𝐴) ≤ 𝐵))
5920, 58mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≤ 𝐵)
6048, 6, 29, 59, 38letrd 11418 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≤ π)
61 lediv1 12133 . . . . . . . . . . 11 (((𝐵𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6248, 29, 33, 34, 61syl112anc 1376 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) ≤ π ↔ ((𝐵𝐴) / 2) ≤ (π / 2)))
6360, 62mpbid 232 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) ≤ (π / 2))
64 pirp 26503 . . . . . . . . . 10 π ∈ ℝ+
65 rphalflt 13064 . . . . . . . . . 10 (π ∈ ℝ+ → (π / 2) < π)
6664, 65mp1i 13 . . . . . . . . 9 (𝜑 → (π / 2) < π)
6749, 57, 29, 63, 66lelttrd 11419 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 2) < π)
68 elioo2 13428 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π)))
6940, 41, 68mp2an 692 . . . . . . . 8 (((𝐵𝐴) / 2) ∈ (0(,)π) ↔ (((𝐵𝐴) / 2) ∈ ℝ ∧ 0 < ((𝐵𝐴) / 2) ∧ ((𝐵𝐴) / 2) < π))
7049, 55, 67, 69syl3anbrc 1344 . . . . . . 7 (𝜑 → ((𝐵𝐴) / 2) ∈ (0(,)π))
71 sinq12gt0 26549 . . . . . . 7 (((𝐵𝐴) / 2) ∈ (0(,)π) → 0 < (sin‘((𝐵𝐴) / 2)))
7270, 71syl 17 . . . . . 6 (𝜑 → 0 < (sin‘((𝐵𝐴) / 2)))
7350, 72elrpd 13074 . . . . 5 (𝜑 → (sin‘((𝐵𝐴) / 2)) ∈ ℝ+)
7447, 73rpmulcld 13093 . . . 4 (𝜑 → ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+)
75 rpmulcl 13058 . . . 4 ((2 ∈ ℝ+ ∧ ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2))) ∈ ℝ+) → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7615, 74, 75sylancr 587 . . 3 (𝜑 → (2 · ((sin‘((𝐵 + 𝐴) / 2)) · (sin‘((𝐵𝐴) / 2)))) ∈ ℝ+)
7714, 76eqeltrd 2841 . 2 (𝜑 → ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+)
786recoscld 16180 . . 3 (𝜑 → (cos‘𝐵) ∈ ℝ)
7911recoscld 16180 . . 3 (𝜑 → (cos‘𝐴) ∈ ℝ)
80 difrp 13073 . . 3 (((cos‘𝐵) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8178, 79, 80syl2anc 584 . 2 (𝜑 → ((cos‘𝐵) < (cos‘𝐴) ↔ ((cos‘𝐴) − (cos‘𝐵)) ∈ ℝ+))
8277, 81mpbird 257 1 (𝜑 → (cos‘𝐵) < (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  [,]cicc 13390  sincsin 16099  cosccos 16100  πcpi 16102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  cosord  26573  cos0pilt1  26574
  Copyright terms: Public domain W3C validator