![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efif1olem3 | Structured version Visualization version GIF version |
Description: Lemma for efif1o 26047. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
efif1o.1 | ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
efif1o.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efif1olem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | |
2 | efif1o.2 | . . . . . . 7 ⊢ 𝐶 = (◡abs “ {1}) | |
3 | 1, 2 | eleqtrdi 2844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
4 | absf 15281 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
5 | ffn 6715 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
6 | fniniseg 7059 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))) | |
7 | 4, 5, 6 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
8 | 3, 7 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
9 | 8 | simpld 496 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
10 | 9 | sqrtcld 15381 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
11 | 10 | imcld 15139 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ) |
12 | absimle 15253 | . . . . . 6 ⊢ ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) | |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) |
14 | 9 | sqsqrtd 15383 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
15 | 14 | fveq2d 6893 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
16 | 2nn0 12486 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
17 | absexp 15248 | . . . . . . . . 9 ⊢ (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | |
18 | 10, 16, 17 | sylancl 587 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
19 | 8 | simprd 497 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
20 | 15, 18, 19 | 3eqtr3d 2781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
21 | sq1 14156 | . . . . . . 7 ⊢ (1↑2) = 1 | |
22 | 20, 21 | eqtr4di 2791 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2)) |
23 | 10 | abscld 15380 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) ∈ ℝ) |
24 | 10 | absge0d 15388 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (abs‘(√‘𝑥))) |
25 | 1re 11211 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
26 | 0le1 11734 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
27 | sq11 14093 | . . . . . . . 8 ⊢ ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) | |
28 | 25, 26, 27 | mpanr12 704 | . . . . . . 7 ⊢ (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
29 | 23, 24, 28 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
30 | 22, 29 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) = 1) |
31 | 13, 30 | breqtrd 5174 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1) |
32 | absle 15259 | . . . . 5 ⊢ (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) | |
33 | 11, 25, 32 | sylancl 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) |
34 | 31, 33 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
35 | 34 | simpld 496 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → -1 ≤ (ℑ‘(√‘𝑥))) |
36 | 34 | simprd 497 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ≤ 1) |
37 | neg1rr 12324 | . . 3 ⊢ -1 ∈ ℝ | |
38 | 37, 25 | elicc2i 13387 | . 2 ⊢ ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
39 | 11, 35, 36, 38 | syl3anbrc 1344 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4628 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 ℂcc 11105 ℝcr 11106 0cc0 11107 1c1 11108 ici 11109 · cmul 11112 ≤ cle 11246 -cneg 11442 2c2 12264 ℕ0cn0 12469 [,]cicc 13324 ↑cexp 14024 ℑcim 15042 √csqrt 15177 abscabs 15178 expce 16002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-icc 13328 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 |
This theorem is referenced by: efif1olem4 26046 |
Copyright terms: Public domain | W3C validator |