| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efif1olem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for efif1o 26512. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| efif1o.1 | ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
| efif1o.2 | ⊢ 𝐶 = (◡abs “ {1}) |
| Ref | Expression |
|---|---|
| efif1olem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | |
| 2 | efif1o.2 | . . . . . . 7 ⊢ 𝐶 = (◡abs “ {1}) | |
| 3 | 1, 2 | eleqtrdi 2845 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
| 4 | absf 15361 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
| 5 | ffn 6711 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 6 | fniniseg 7055 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))) | |
| 7 | 4, 5, 6 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 8 | 3, 7 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
| 10 | 9 | sqrtcld 15461 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
| 11 | 10 | imcld 15219 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ) |
| 12 | absimle 15333 | . . . . . 6 ⊢ ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) | |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) |
| 14 | 9 | sqsqrtd 15463 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
| 15 | 14 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
| 16 | 2nn0 12523 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 17 | absexp 15328 | . . . . . . . . 9 ⊢ (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | |
| 18 | 10, 16, 17 | sylancl 586 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
| 19 | 8 | simprd 495 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
| 20 | 15, 18, 19 | 3eqtr3d 2779 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
| 21 | sq1 14218 | . . . . . . 7 ⊢ (1↑2) = 1 | |
| 22 | 20, 21 | eqtr4di 2789 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2)) |
| 23 | 10 | abscld 15460 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) ∈ ℝ) |
| 24 | 10 | absge0d 15468 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (abs‘(√‘𝑥))) |
| 25 | 1re 11240 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 26 | 0le1 11765 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 27 | sq11 14154 | . . . . . . . 8 ⊢ ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) | |
| 28 | 25, 26, 27 | mpanr12 705 | . . . . . . 7 ⊢ (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
| 29 | 23, 24, 28 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
| 30 | 22, 29 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) = 1) |
| 31 | 13, 30 | breqtrd 5150 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1) |
| 32 | absle 15339 | . . . . 5 ⊢ (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) | |
| 33 | 11, 25, 32 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) |
| 34 | 31, 33 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
| 35 | 34 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → -1 ≤ (ℑ‘(√‘𝑥))) |
| 36 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ≤ 1) |
| 37 | neg1rr 12360 | . . 3 ⊢ -1 ∈ ℝ | |
| 38 | 37, 25 | elicc2i 13434 | . 2 ⊢ ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
| 39 | 11, 35, 36, 38 | syl3anbrc 1344 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 ici 11136 · cmul 11139 ≤ cle 11275 -cneg 11472 2c2 12300 ℕ0cn0 12506 [,]cicc 13370 ↑cexp 14084 ℑcim 15122 √csqrt 15257 abscabs 15258 expce 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-icc 13374 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: efif1olem4 26511 |
| Copyright terms: Public domain | W3C validator |