![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efif1olem3 | Structured version Visualization version GIF version |
Description: Lemma for efif1o 26603. (Contributed by Mario Carneiro, 8-May-2015.) |
Ref | Expression |
---|---|
efif1o.1 | ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
efif1o.2 | ⊢ 𝐶 = (◡abs “ {1}) |
Ref | Expression |
---|---|
efif1olem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | |
2 | efif1o.2 | . . . . . . 7 ⊢ 𝐶 = (◡abs “ {1}) | |
3 | 1, 2 | eleqtrdi 2849 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
4 | absf 15373 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
5 | ffn 6737 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
6 | fniniseg 7080 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))) | |
7 | 4, 5, 6 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
8 | 3, 7 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
9 | 8 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
10 | 9 | sqrtcld 15473 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
11 | 10 | imcld 15231 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ) |
12 | absimle 15345 | . . . . . 6 ⊢ ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) | |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) |
14 | 9 | sqsqrtd 15475 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
15 | 14 | fveq2d 6911 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
16 | 2nn0 12541 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
17 | absexp 15340 | . . . . . . . . 9 ⊢ (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | |
18 | 10, 16, 17 | sylancl 586 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
19 | 8 | simprd 495 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
20 | 15, 18, 19 | 3eqtr3d 2783 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
21 | sq1 14231 | . . . . . . 7 ⊢ (1↑2) = 1 | |
22 | 20, 21 | eqtr4di 2793 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2)) |
23 | 10 | abscld 15472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) ∈ ℝ) |
24 | 10 | absge0d 15480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (abs‘(√‘𝑥))) |
25 | 1re 11259 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
26 | 0le1 11784 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
27 | sq11 14168 | . . . . . . . 8 ⊢ ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) | |
28 | 25, 26, 27 | mpanr12 705 | . . . . . . 7 ⊢ (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
29 | 23, 24, 28 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
30 | 22, 29 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) = 1) |
31 | 13, 30 | breqtrd 5174 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1) |
32 | absle 15351 | . . . . 5 ⊢ (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) | |
33 | 11, 25, 32 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) |
34 | 31, 33 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
35 | 34 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → -1 ≤ (ℑ‘(√‘𝑥))) |
36 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ≤ 1) |
37 | neg1rr 12379 | . . 3 ⊢ -1 ∈ ℝ | |
38 | 37, 25 | elicc2i 13450 | . 2 ⊢ ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
39 | 11, 35, 36, 38 | syl3anbrc 1342 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 ici 11155 · cmul 11158 ≤ cle 11294 -cneg 11491 2c2 12319 ℕ0cn0 12524 [,]cicc 13387 ↑cexp 14099 ℑcim 15134 √csqrt 15269 abscabs 15270 expce 16094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-icc 13391 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 |
This theorem is referenced by: efif1olem4 26602 |
Copyright terms: Public domain | W3C validator |