MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem3 Structured version   Visualization version   GIF version

Theorem efif1olem3 26587
Description: Lemma for efif1o 26589. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efif1olem3 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Distinct variable groups:   𝑥,𝑤,𝐶   𝑥,𝐹   𝜑,𝑤,𝑥   𝑤,𝐷,𝑥
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1olem3
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥𝐶)
2 efif1o.2 . . . . . . 7 𝐶 = (abs “ {1})
31, 2eleqtrdi 2850 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
4 absf 15377 . . . . . . 7 abs:ℂ⟶ℝ
5 ffn 6735 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
6 fniniseg 7079 . . . . . . 7 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
74, 5, 6mp2b 10 . . . . . 6 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
83, 7sylib 218 . . . . 5 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
98simpld 494 . . . 4 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
109sqrtcld 15477 . . 3 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
1110imcld 15235 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ)
12 absimle 15349 . . . . . 6 ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
149sqsqrtd 15479 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
1514fveq2d 6909 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
16 2nn0 12545 . . . . . . . . 9 2 ∈ ℕ0
17 absexp 15344 . . . . . . . . 9 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
1810, 16, 17sylancl 586 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
198simprd 495 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
2015, 18, 193eqtr3d 2784 . . . . . . 7 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
21 sq1 14235 . . . . . . 7 (1↑2) = 1
2220, 21eqtr4di 2794 . . . . . 6 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2))
2310abscld 15476 . . . . . . 7 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) ∈ ℝ)
2410absge0d 15484 . . . . . . 7 ((𝜑𝑥𝐶) → 0 ≤ (abs‘(√‘𝑥)))
25 1re 11262 . . . . . . . 8 1 ∈ ℝ
26 0le1 11787 . . . . . . . 8 0 ≤ 1
27 sq11 14172 . . . . . . . 8 ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2825, 26, 27mpanr12 705 . . . . . . 7 (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2923, 24, 28syl2anc 584 . . . . . 6 ((𝜑𝑥𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
3022, 29mpbid 232 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) = 1)
3113, 30breqtrd 5168 . . . 4 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1)
32 absle 15355 . . . . 5 (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3311, 25, 32sylancl 586 . . . 4 ((𝜑𝑥𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3431, 33mpbid 232 . . 3 ((𝜑𝑥𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3534simpld 494 . 2 ((𝜑𝑥𝐶) → -1 ≤ (ℑ‘(√‘𝑥)))
3634simprd 495 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ≤ 1)
37 neg1rr 12382 . . 3 -1 ∈ ℝ
3837, 25elicc2i 13454 . 2 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3911, 35, 36, 38syl3anbrc 1343 1 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {csn 4625   class class class wbr 5142  cmpt 5224  ccnv 5683  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   · cmul 11161  cle 11297  -cneg 11494  2c2 12322  0cn0 12528  [,]cicc 13391  cexp 14103  cim 15138  csqrt 15273  abscabs 15274  expce 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-icc 13395  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276
This theorem is referenced by:  efif1olem4  26588
  Copyright terms: Public domain W3C validator