Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem3 Structured version   Visualization version   GIF version

Theorem efif1olem3 25248
 Description: Lemma for efif1o 25250. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efif1olem3 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Distinct variable groups:   𝑥,𝑤,𝐶   𝑥,𝐹   𝜑,𝑤,𝑥   𝑤,𝐷,𝑥
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1olem3
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥𝐶)
2 efif1o.2 . . . . . . 7 𝐶 = (abs “ {1})
31, 2eleqtrdi 2862 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
4 absf 14758 . . . . . . 7 abs:ℂ⟶ℝ
5 ffn 6503 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
6 fniniseg 6826 . . . . . . 7 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
74, 5, 6mp2b 10 . . . . . 6 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
83, 7sylib 221 . . . . 5 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
98simpld 498 . . . 4 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
109sqrtcld 14858 . . 3 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
1110imcld 14615 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ)
12 absimle 14730 . . . . . 6 ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
149sqsqrtd 14860 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
1514fveq2d 6667 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
16 2nn0 11964 . . . . . . . . 9 2 ∈ ℕ0
17 absexp 14725 . . . . . . . . 9 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
1810, 16, 17sylancl 589 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
198simprd 499 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
2015, 18, 193eqtr3d 2801 . . . . . . 7 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
21 sq1 13621 . . . . . . 7 (1↑2) = 1
2220, 21eqtr4di 2811 . . . . . 6 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2))
2310abscld 14857 . . . . . . 7 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) ∈ ℝ)
2410absge0d 14865 . . . . . . 7 ((𝜑𝑥𝐶) → 0 ≤ (abs‘(√‘𝑥)))
25 1re 10692 . . . . . . . 8 1 ∈ ℝ
26 0le1 11214 . . . . . . . 8 0 ≤ 1
27 sq11 13559 . . . . . . . 8 ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2825, 26, 27mpanr12 704 . . . . . . 7 (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2923, 24, 28syl2anc 587 . . . . . 6 ((𝜑𝑥𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
3022, 29mpbid 235 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) = 1)
3113, 30breqtrd 5062 . . . 4 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1)
32 absle 14736 . . . . 5 (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3311, 25, 32sylancl 589 . . . 4 ((𝜑𝑥𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3431, 33mpbid 235 . . 3 ((𝜑𝑥𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3534simpld 498 . 2 ((𝜑𝑥𝐶) → -1 ≤ (ℑ‘(√‘𝑥)))
3634simprd 499 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ≤ 1)
37 neg1rr 11802 . . 3 -1 ∈ ℝ
3837, 25elicc2i 12858 . 2 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3911, 35, 36, 38syl3anbrc 1340 1 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {csn 4525   class class class wbr 5036   ↦ cmpt 5116  ◡ccnv 5527   “ cima 5531   Fn wfn 6335  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156  ℂcc 10586  ℝcr 10587  0cc0 10588  1c1 10589  ici 10590   · cmul 10593   ≤ cle 10727  -cneg 10922  2c2 11742  ℕ0cn0 11947  [,]cicc 12795  ↑cexp 13492  ℑcim 14518  √csqrt 14653  abscabs 14654  expce 15476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-icc 12799  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656 This theorem is referenced by:  efif1olem4  25249
 Copyright terms: Public domain W3C validator