MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem3 Structured version   Visualization version   GIF version

Theorem efif1olem3 26429
Description: Lemma for efif1o 26431. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efif1olem3 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Distinct variable groups:   𝑥,𝑤,𝐶   𝑥,𝐹   𝜑,𝑤,𝑥   𝑤,𝐷,𝑥
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1olem3
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥𝐶)
2 efif1o.2 . . . . . . 7 𝐶 = (abs “ {1})
31, 2eleqtrdi 2838 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
4 absf 15280 . . . . . . 7 abs:ℂ⟶ℝ
5 ffn 6670 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
6 fniniseg 7014 . . . . . . 7 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
74, 5, 6mp2b 10 . . . . . 6 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
83, 7sylib 218 . . . . 5 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
98simpld 494 . . . 4 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
109sqrtcld 15382 . . 3 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
1110imcld 15137 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ)
12 absimle 15251 . . . . . 6 ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
149sqsqrtd 15384 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
1514fveq2d 6844 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
16 2nn0 12435 . . . . . . . . 9 2 ∈ ℕ0
17 absexp 15246 . . . . . . . . 9 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
1810, 16, 17sylancl 586 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
198simprd 495 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
2015, 18, 193eqtr3d 2772 . . . . . . 7 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
21 sq1 14136 . . . . . . 7 (1↑2) = 1
2220, 21eqtr4di 2782 . . . . . 6 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2))
2310abscld 15381 . . . . . . 7 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) ∈ ℝ)
2410absge0d 15389 . . . . . . 7 ((𝜑𝑥𝐶) → 0 ≤ (abs‘(√‘𝑥)))
25 1re 11150 . . . . . . . 8 1 ∈ ℝ
26 0le1 11677 . . . . . . . 8 0 ≤ 1
27 sq11 14072 . . . . . . . 8 ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2825, 26, 27mpanr12 705 . . . . . . 7 (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2923, 24, 28syl2anc 584 . . . . . 6 ((𝜑𝑥𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
3022, 29mpbid 232 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) = 1)
3113, 30breqtrd 5128 . . . 4 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1)
32 absle 15258 . . . . 5 (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3311, 25, 32sylancl 586 . . . 4 ((𝜑𝑥𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3431, 33mpbid 232 . . 3 ((𝜑𝑥𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3534simpld 494 . 2 ((𝜑𝑥𝐶) → -1 ≤ (ℑ‘(√‘𝑥)))
3634simprd 495 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ≤ 1)
37 neg1rr 12148 . . 3 -1 ∈ ℝ
3837, 25elicc2i 13349 . 2 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3911, 35, 36, 38syl3anbrc 1344 1 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   · cmul 11049  cle 11185  -cneg 11382  2c2 12217  0cn0 12418  [,]cicc 13285  cexp 14002  cim 15040  csqrt 15175  abscabs 15176  expce 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  efif1olem4  26430
  Copyright terms: Public domain W3C validator