MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem3 Structured version   Visualization version   GIF version

Theorem efif1olem3 25900
Description: Lemma for efif1o 25902. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efif1olem3 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Distinct variable groups:   𝑥,𝑤,𝐶   𝑥,𝐹   𝜑,𝑤,𝑥   𝑤,𝐷,𝑥
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1olem3
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥𝐶)
2 efif1o.2 . . . . . . 7 𝐶 = (abs “ {1})
31, 2eleqtrdi 2848 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
4 absf 15222 . . . . . . 7 abs:ℂ⟶ℝ
5 ffn 6668 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
6 fniniseg 7010 . . . . . . 7 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
74, 5, 6mp2b 10 . . . . . 6 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
83, 7sylib 217 . . . . 5 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
98simpld 495 . . . 4 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
109sqrtcld 15322 . . 3 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
1110imcld 15080 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ)
12 absimle 15194 . . . . . 6 ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
149sqsqrtd 15324 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
1514fveq2d 6846 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
16 2nn0 12430 . . . . . . . . 9 2 ∈ ℕ0
17 absexp 15189 . . . . . . . . 9 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
1810, 16, 17sylancl 586 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
198simprd 496 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
2015, 18, 193eqtr3d 2784 . . . . . . 7 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
21 sq1 14099 . . . . . . 7 (1↑2) = 1
2220, 21eqtr4di 2794 . . . . . 6 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2))
2310abscld 15321 . . . . . . 7 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) ∈ ℝ)
2410absge0d 15329 . . . . . . 7 ((𝜑𝑥𝐶) → 0 ≤ (abs‘(√‘𝑥)))
25 1re 11155 . . . . . . . 8 1 ∈ ℝ
26 0le1 11678 . . . . . . . 8 0 ≤ 1
27 sq11 14036 . . . . . . . 8 ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2825, 26, 27mpanr12 703 . . . . . . 7 (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2923, 24, 28syl2anc 584 . . . . . 6 ((𝜑𝑥𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
3022, 29mpbid 231 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) = 1)
3113, 30breqtrd 5131 . . . 4 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1)
32 absle 15200 . . . . 5 (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3311, 25, 32sylancl 586 . . . 4 ((𝜑𝑥𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3431, 33mpbid 231 . . 3 ((𝜑𝑥𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3534simpld 495 . 2 ((𝜑𝑥𝐶) → -1 ≤ (ℑ‘(√‘𝑥)))
3634simprd 496 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ≤ 1)
37 neg1rr 12268 . . 3 -1 ∈ ℝ
3837, 25elicc2i 13330 . 2 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3911, 35, 36, 38syl3anbrc 1343 1 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   · cmul 11056  cle 11190  -cneg 11386  2c2 12208  0cn0 12413  [,]cicc 13267  cexp 13967  cim 14983  csqrt 15118  abscabs 15119  expce 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  efif1olem4  25901
  Copyright terms: Public domain W3C validator