| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efif1olem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for efif1o 26455. (Contributed by Mario Carneiro, 8-May-2015.) |
| Ref | Expression |
|---|---|
| efif1o.1 | ⊢ 𝐹 = (𝑤 ∈ 𝐷 ↦ (exp‘(i · 𝑤))) |
| efif1o.2 | ⊢ 𝐶 = (◡abs “ {1}) |
| Ref | Expression |
|---|---|
| efif1olem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) | |
| 2 | efif1o.2 | . . . . . . 7 ⊢ 𝐶 = (◡abs “ {1}) | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (◡abs “ {1})) |
| 4 | absf 15304 | . . . . . . 7 ⊢ abs:ℂ⟶ℝ | |
| 5 | ffn 6688 | . . . . . . 7 ⊢ (abs:ℂ⟶ℝ → abs Fn ℂ) | |
| 6 | fniniseg 7032 | . . . . . . 7 ⊢ (abs Fn ℂ → (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))) | |
| 7 | 4, 5, 6 | mp2b 10 | . . . . . 6 ⊢ (𝑥 ∈ (◡abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 8 | 3, 7 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)) |
| 9 | 8 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℂ) |
| 10 | 9 | sqrtcld 15406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (√‘𝑥) ∈ ℂ) |
| 11 | 10 | imcld 15161 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ) |
| 12 | absimle 15275 | . . . . . 6 ⊢ ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) | |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥))) |
| 14 | 9 | sqsqrtd 15408 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((√‘𝑥)↑2) = 𝑥) |
| 15 | 14 | fveq2d 6862 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥)) |
| 16 | 2nn0 12459 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 17 | absexp 15270 | . . . . . . . . 9 ⊢ (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) | |
| 18 | 10, 16, 17 | sylancl 586 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2)) |
| 19 | 8 | simprd 495 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘𝑥) = 1) |
| 20 | 15, 18, 19 | 3eqtr3d 2772 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = 1) |
| 21 | sq1 14160 | . . . . . . 7 ⊢ (1↑2) = 1 | |
| 22 | 20, 21 | eqtr4di 2782 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2)) |
| 23 | 10 | abscld 15405 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) ∈ ℝ) |
| 24 | 10 | absge0d 15413 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 0 ≤ (abs‘(√‘𝑥))) |
| 25 | 1re 11174 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 26 | 0le1 11701 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 27 | sq11 14096 | . . . . . . . 8 ⊢ ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) | |
| 28 | 25, 26, 27 | mpanr12 705 | . . . . . . 7 ⊢ (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
| 29 | 23, 24, 28 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1)) |
| 30 | 22, 29 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(√‘𝑥)) = 1) |
| 31 | 13, 30 | breqtrd 5133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1) |
| 32 | absle 15282 | . . . . 5 ⊢ (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) | |
| 33 | 11, 25, 32 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))) |
| 34 | 31, 33 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
| 35 | 34 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → -1 ≤ (ℑ‘(√‘𝑥))) |
| 36 | 34 | simprd 495 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ≤ 1) |
| 37 | neg1rr 12172 | . . 3 ⊢ -1 ∈ ℝ | |
| 38 | 37, 25 | elicc2i 13373 | . 2 ⊢ ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)) |
| 39 | 11, 35, 36, 38 | syl3anbrc 1344 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ici 11070 · cmul 11073 ≤ cle 11209 -cneg 11406 2c2 12241 ℕ0cn0 12442 [,]cicc 13309 ↑cexp 14026 ℑcim 15064 √csqrt 15199 abscabs 15200 expce 16027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-icc 13313 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: efif1olem4 26454 |
| Copyright terms: Public domain | W3C validator |