MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem3 Structured version   Visualization version   GIF version

Theorem efif1olem3 25128
Description: Lemma for efif1o 25130. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
efif1o.1 𝐹 = (𝑤𝐷 ↦ (exp‘(i · 𝑤)))
efif1o.2 𝐶 = (abs “ {1})
Assertion
Ref Expression
efif1olem3 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Distinct variable groups:   𝑥,𝑤,𝐶   𝑥,𝐹   𝜑,𝑤,𝑥   𝑤,𝐷,𝑥
Allowed substitution hint:   𝐹(𝑤)

Proof of Theorem efif1olem3
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝜑𝑥𝐶) → 𝑥𝐶)
2 efif1o.2 . . . . . . 7 𝐶 = (abs “ {1})
31, 2eleqtrdi 2923 . . . . . 6 ((𝜑𝑥𝐶) → 𝑥 ∈ (abs “ {1}))
4 absf 14697 . . . . . . 7 abs:ℂ⟶ℝ
5 ffn 6514 . . . . . . 7 (abs:ℂ⟶ℝ → abs Fn ℂ)
6 fniniseg 6830 . . . . . . 7 (abs Fn ℂ → (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1)))
74, 5, 6mp2b 10 . . . . . 6 (𝑥 ∈ (abs “ {1}) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
83, 7sylib 220 . . . . 5 ((𝜑𝑥𝐶) → (𝑥 ∈ ℂ ∧ (abs‘𝑥) = 1))
98simpld 497 . . . 4 ((𝜑𝑥𝐶) → 𝑥 ∈ ℂ)
109sqrtcld 14797 . . 3 ((𝜑𝑥𝐶) → (√‘𝑥) ∈ ℂ)
1110imcld 14554 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ ℝ)
12 absimle 14669 . . . . . 6 ((√‘𝑥) ∈ ℂ → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ (abs‘(√‘𝑥)))
149sqsqrtd 14799 . . . . . . . . 9 ((𝜑𝑥𝐶) → ((√‘𝑥)↑2) = 𝑥)
1514fveq2d 6674 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = (abs‘𝑥))
16 2nn0 11915 . . . . . . . . 9 2 ∈ ℕ0
17 absexp 14664 . . . . . . . . 9 (((√‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
1810, 16, 17sylancl 588 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘((√‘𝑥)↑2)) = ((abs‘(√‘𝑥))↑2))
198simprd 498 . . . . . . . 8 ((𝜑𝑥𝐶) → (abs‘𝑥) = 1)
2015, 18, 193eqtr3d 2864 . . . . . . 7 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = 1)
21 sq1 13559 . . . . . . 7 (1↑2) = 1
2220, 21syl6eqr 2874 . . . . . 6 ((𝜑𝑥𝐶) → ((abs‘(√‘𝑥))↑2) = (1↑2))
2310abscld 14796 . . . . . . 7 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) ∈ ℝ)
2410absge0d 14804 . . . . . . 7 ((𝜑𝑥𝐶) → 0 ≤ (abs‘(√‘𝑥)))
25 1re 10641 . . . . . . . 8 1 ∈ ℝ
26 0le1 11163 . . . . . . . 8 0 ≤ 1
27 sq11 13497 . . . . . . . 8 ((((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2825, 26, 27mpanr12 703 . . . . . . 7 (((abs‘(√‘𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(√‘𝑥))) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
2923, 24, 28syl2anc 586 . . . . . 6 ((𝜑𝑥𝐶) → (((abs‘(√‘𝑥))↑2) = (1↑2) ↔ (abs‘(√‘𝑥)) = 1))
3022, 29mpbid 234 . . . . 5 ((𝜑𝑥𝐶) → (abs‘(√‘𝑥)) = 1)
3113, 30breqtrd 5092 . . . 4 ((𝜑𝑥𝐶) → (abs‘(ℑ‘(√‘𝑥))) ≤ 1)
32 absle 14675 . . . . 5 (((ℑ‘(√‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3311, 25, 32sylancl 588 . . . 4 ((𝜑𝑥𝐶) → ((abs‘(ℑ‘(√‘𝑥))) ≤ 1 ↔ (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1)))
3431, 33mpbid 234 . . 3 ((𝜑𝑥𝐶) → (-1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3534simpld 497 . 2 ((𝜑𝑥𝐶) → -1 ≤ (ℑ‘(√‘𝑥)))
3634simprd 498 . 2 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ≤ 1)
37 neg1rr 11753 . . 3 -1 ∈ ℝ
3837, 25elicc2i 12803 . 2 ((ℑ‘(√‘𝑥)) ∈ (-1[,]1) ↔ ((ℑ‘(√‘𝑥)) ∈ ℝ ∧ -1 ≤ (ℑ‘(√‘𝑥)) ∧ (ℑ‘(√‘𝑥)) ≤ 1))
3911, 35, 36, 38syl3anbrc 1339 1 ((𝜑𝑥𝐶) → (ℑ‘(√‘𝑥)) ∈ (-1[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {csn 4567   class class class wbr 5066  cmpt 5146  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   · cmul 10542  cle 10676  -cneg 10871  2c2 11693  0cn0 11898  [,]cicc 12742  cexp 13430  cim 14457  csqrt 14592  abscabs 14593  expce 15415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by:  efif1olem4  25129
  Copyright terms: Public domain W3C validator