![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmatcollpw3 | Structured version Visualization version GIF version |
Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
pmatcollpw.p | ⊢ 𝑃 = (Poly1‘𝑅) |
pmatcollpw.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
pmatcollpw.b | ⊢ 𝐵 = (Base‘𝐶) |
pmatcollpw.m | ⊢ ∗ = ( ·𝑠 ‘𝐶) |
pmatcollpw.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
pmatcollpw.x | ⊢ 𝑋 = (var1‘𝑅) |
pmatcollpw.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
pmatcollpw3.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
pmatcollpw3.d | ⊢ 𝐷 = (Base‘𝐴) |
Ref | Expression |
---|---|
pmatcollpw3 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatcollpw.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | pmatcollpw.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
3 | pmatcollpw.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | pmatcollpw.m | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐶) | |
5 | pmatcollpw.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
6 | pmatcollpw.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
7 | pmatcollpw.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
8 | 1, 2, 3, 4, 5, 6, 7 | pmatcollpw 22130 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛)))))) |
9 | ssid 3966 | . . 3 ⊢ ℕ0 ⊆ ℕ0 | |
10 | 0nn0 12428 | . . . 4 ⊢ 0 ∈ ℕ0 | |
11 | 10 | ne0ii 4297 | . . 3 ⊢ ℕ0 ≠ ∅ |
12 | pmatcollpw3.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
13 | pmatcollpw3.d | . . . 4 ⊢ 𝐷 = (Base‘𝐴) | |
14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | pmatcollpw3lem 22132 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (ℕ0 ⊆ ℕ0 ∧ ℕ0 ≠ ∅)) → (𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |
15 | 9, 11, 14 | mpanr12 703 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑀 decompPMat 𝑛))))) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛))))))) |
16 | 8, 15 | mpd 15 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑓 ∈ (𝐷 ↑m ℕ0)𝑀 = (𝐶 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) ∗ (𝑇‘(𝑓‘𝑛)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 ⊆ wss 3910 ∅c0 4282 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 0cc0 11051 ℕ0cn0 12413 Basecbs 17083 ·𝑠 cvsca 17137 Σg cgsu 17322 .gcmg 18872 mulGrpcmgp 19896 CRingccrg 19965 var1cv1 21547 Poly1cpl1 21548 Mat cmat 21754 matToPolyMat cmat2pmat 22053 decompPMat cdecpmat 22111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-cur 8198 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-srg 19918 df-ring 19966 df-cring 19967 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-assa 21259 df-ascl 21261 df-psr 21311 df-mvr 21312 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-vr1 21552 df-ply1 21553 df-coe1 21554 df-mat 21755 df-mat2pmat 22056 df-decpmat 22112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |