MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw3 Structured version   Visualization version   GIF version

Theorem pmatcollpw3 22149
Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 27-Oct-2019.) (Revised by AV, 4-Dec-2019.) (Proof shortened by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw.p ๐‘ƒ = (Poly1โ€˜๐‘…)
pmatcollpw.c ๐ถ = (๐‘ Mat ๐‘ƒ)
pmatcollpw.b ๐ต = (Baseโ€˜๐ถ)
pmatcollpw.m โˆ— = ( ยท๐‘  โ€˜๐ถ)
pmatcollpw.e โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
pmatcollpw.x ๐‘‹ = (var1โ€˜๐‘…)
pmatcollpw.t ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
pmatcollpw3.a ๐ด = (๐‘ Mat ๐‘…)
pmatcollpw3.d ๐ท = (Baseโ€˜๐ด)
Assertion
Ref Expression
pmatcollpw3 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m โ„•0)๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Distinct variable groups:   ๐ต,๐‘›   ๐‘›,๐‘€   ๐‘›,๐‘   ๐‘ƒ,๐‘›   ๐‘…,๐‘›   ๐‘›,๐‘‹   โ†‘ ,๐‘›   ๐ถ,๐‘›   ๐ต,๐‘“   ๐ถ,๐‘“,๐‘›   ๐ท,๐‘“   ๐‘“,๐‘€   ๐‘“,๐‘   ๐‘…,๐‘“   ๐‘‡,๐‘“   ๐‘“,๐‘‹   โ†‘ ,๐‘“   โˆ— ,๐‘“
Allowed substitution hints:   ๐ด(๐‘“,๐‘›)   ๐ท(๐‘›)   ๐‘ƒ(๐‘“)   ๐‘‡(๐‘›)   โˆ— (๐‘›)

Proof of Theorem pmatcollpw3
StepHypRef Expression
1 pmatcollpw.p . . 3 ๐‘ƒ = (Poly1โ€˜๐‘…)
2 pmatcollpw.c . . 3 ๐ถ = (๐‘ Mat ๐‘ƒ)
3 pmatcollpw.b . . 3 ๐ต = (Baseโ€˜๐ถ)
4 pmatcollpw.m . . 3 โˆ— = ( ยท๐‘  โ€˜๐ถ)
5 pmatcollpw.e . . 3 โ†‘ = (.gโ€˜(mulGrpโ€˜๐‘ƒ))
6 pmatcollpw.x . . 3 ๐‘‹ = (var1โ€˜๐‘…)
7 pmatcollpw.t . . 3 ๐‘‡ = (๐‘ matToPolyMat ๐‘…)
81, 2, 3, 4, 5, 6, 7pmatcollpw 22146 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ ๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))))
9 ssid 3967 . . 3 โ„•0 โŠ† โ„•0
10 0nn0 12433 . . . 4 0 โˆˆ โ„•0
1110ne0ii 4298 . . 3 โ„•0 โ‰  โˆ…
12 pmatcollpw3.a . . . 4 ๐ด = (๐‘ Mat ๐‘…)
13 pmatcollpw3.d . . . 4 ๐ท = (Baseโ€˜๐ด)
141, 2, 3, 4, 5, 6, 7, 12, 13pmatcollpw3lem 22148 . . 3 (((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โˆง (โ„•0 โŠ† โ„•0 โˆง โ„•0 โ‰  โˆ…)) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m โ„•0)๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
159, 11, 14mpanr12 704 . 2 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ (๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘€ decompPMat ๐‘›))))) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m โ„•0)๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›)))))))
168, 15mpd 15 1 ((๐‘ โˆˆ Fin โˆง ๐‘… โˆˆ CRing โˆง ๐‘€ โˆˆ ๐ต) โ†’ โˆƒ๐‘“ โˆˆ (๐ท โ†‘m โ„•0)๐‘€ = (๐ถ ฮฃg (๐‘› โˆˆ โ„•0 โ†ฆ ((๐‘› โ†‘ ๐‘‹) โˆ— (๐‘‡โ€˜(๐‘“โ€˜๐‘›))))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2940  โˆƒwrex 3070   โŠ† wss 3911  โˆ…c0 4283   โ†ฆ cmpt 5189  โ€˜cfv 6497  (class class class)co 7358   โ†‘m cmap 8768  Fincfn 8886  0cc0 11056  โ„•0cn0 12418  Basecbs 17088   ยท๐‘  cvsca 17142   ฮฃg cgsu 17327  .gcmg 18877  mulGrpcmgp 19901  CRingccrg 19970  var1cv1 21563  Poly1cpl1 21564   Mat cmat 21770   matToPolyMat cmat2pmat 22069   decompPMat cdecpmat 22127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-ot 4596  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-ofr 7619  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-cur 8199  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-sup 9383  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-fzo 13574  df-seq 13913  df-hash 14237  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-0g 17328  df-gsum 17329  df-prds 17334  df-pws 17336  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-mhm 18606  df-submnd 18607  df-grp 18756  df-minusg 18757  df-sbg 18758  df-mulg 18878  df-subg 18930  df-ghm 19011  df-cntz 19102  df-cmn 19569  df-abl 19570  df-mgp 19902  df-ur 19919  df-srg 19923  df-ring 19971  df-cring 19972  df-subrg 20234  df-lmod 20338  df-lss 20408  df-sra 20649  df-rgmod 20650  df-dsmm 21154  df-frlm 21169  df-assa 21275  df-ascl 21277  df-psr 21327  df-mvr 21328  df-mpl 21329  df-opsr 21331  df-psr1 21567  df-vr1 21568  df-ply1 21569  df-coe1 21570  df-mat 21771  df-mat2pmat 22072  df-decpmat 22128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator