MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd2 Structured version   Visualization version   GIF version

Theorem faclbnd2 14340
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 14246 . . . . . 6 (2↑2) = 4
2 2t2e4 12457 . . . . . 6 (2 · 2) = 4
31, 2eqtr4i 2771 . . . . 5 (2↑2) = (2 · 2)
43oveq2i 7459 . . . 4 ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2))
5 2cn 12368 . . . . . 6 2 ∈ ℂ
6 expp1 14119 . . . . . 6 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
75, 6mpan 689 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
87oveq1d 7463 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2)))
94, 8eqtrid 2792 . . 3 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2)))
10 expcl 14130 . . . . 5 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
115, 10mpan 689 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
12 2cnne0 12503 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
13 divmuldiv 11994 . . . . 5 ((((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1412, 12, 13mpanr12 704 . . . 4 (((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1511, 5, 14sylancl 585 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
16 2div2e1 12434 . . . . 5 (2 / 2) = 1
1716oveq2i 7459 . . . 4 (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1)
1811halfcld 12538 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ)
1918mulridd 11307 . . . 4 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2))
2017, 19eqtrid 2792 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2))
219, 15, 203eqtr2rd 2787 . 2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2)))
22 2nn0 12570 . . . 4 2 ∈ ℕ0
23 faclbnd 14339 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
2422, 23mpan 689 . . 3 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
25 2re 12367 . . . . 5 2 ∈ ℝ
26 peano2nn0 12593 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
27 reexpcl 14129 . . . . 5 ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2825, 26, 27sylancr 586 . . . 4 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ)
29 faccl 14332 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3029nnred 12308 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
31 4re 12377 . . . . . . 7 4 ∈ ℝ
321, 31eqeltri 2840 . . . . . 6 (2↑2) ∈ ℝ
33 4pos 12400 . . . . . . 7 0 < 4
3433, 1breqtrri 5193 . . . . . 6 0 < (2↑2)
3532, 34pm3.2i 470 . . . . 5 ((2↑2) ∈ ℝ ∧ 0 < (2↑2))
36 ledivmul 12171 . . . . 5 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3735, 36mp3an3 1450 . . . 4 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3828, 30, 37syl2anc 583 . . 3 (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3924, 38mpbird 257 . 2 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁))
4021, 39eqbrtrd 5188 1 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  4c4 12350  0cn0 12553  cexp 14112  !cfa 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-fac 14323
This theorem is referenced by:  ege2le3  16138
  Copyright terms: Public domain W3C validator