MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd2 Structured version   Visualization version   GIF version

Theorem faclbnd2 13465
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 13374 . . . . . 6 (2↑2) = 4
2 2t2e4 11610 . . . . . 6 (2 · 2) = 4
31, 2eqtr4i 2800 . . . . 5 (2↑2) = (2 · 2)
43oveq2i 6986 . . . 4 ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2))
5 2cn 11514 . . . . . 6 2 ∈ ℂ
6 expp1 13250 . . . . . 6 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
75, 6mpan 678 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
87oveq1d 6990 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2)))
94, 8syl5eq 2821 . . 3 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2)))
10 expcl 13261 . . . . 5 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
115, 10mpan 678 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
12 2cnne0 11656 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
13 divmuldiv 11140 . . . . 5 ((((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1412, 12, 13mpanr12 693 . . . 4 (((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1511, 5, 14sylancl 578 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
16 2div2e1 11587 . . . . 5 (2 / 2) = 1
1716oveq2i 6986 . . . 4 (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1)
1811halfcld 11691 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ)
1918mulid1d 10456 . . . 4 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2))
2017, 19syl5eq 2821 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2))
219, 15, 203eqtr2rd 2816 . 2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2)))
22 2nn0 11725 . . . 4 2 ∈ ℕ0
23 faclbnd 13464 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
2422, 23mpan 678 . . 3 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
25 2re 11513 . . . . 5 2 ∈ ℝ
26 peano2nn0 11748 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
27 reexpcl 13260 . . . . 5 ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2825, 26, 27sylancr 579 . . . 4 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ)
29 faccl 13457 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3029nnred 11455 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
31 4re 11524 . . . . . . 7 4 ∈ ℝ
321, 31eqeltri 2857 . . . . . 6 (2↑2) ∈ ℝ
33 4pos 11553 . . . . . . 7 0 < 4
3433, 1breqtrri 4953 . . . . . 6 0 < (2↑2)
3532, 34pm3.2i 463 . . . . 5 ((2↑2) ∈ ℝ ∧ 0 < (2↑2))
36 ledivmul 11316 . . . . 5 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3735, 36mp3an3 1430 . . . 4 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3828, 30, 37syl2anc 576 . . 3 (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3924, 38mpbird 249 . 2 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁))
4021, 39eqbrtrd 4948 1 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2962   class class class wbr 4926  cfv 6186  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cle 10474   / cdiv 11097  2c2 11494  4c4 11496  0cn0 11706  cexp 13243  !cfa 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-seq 13184  df-exp 13244  df-fac 13448
This theorem is referenced by:  ege2le3  15302
  Copyright terms: Public domain W3C validator