MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd2 Structured version   Visualization version   GIF version

Theorem faclbnd2 14232
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))

Proof of Theorem faclbnd2
StepHypRef Expression
1 sq2 14138 . . . . . 6 (2↑2) = 4
2 2t2e4 12321 . . . . . 6 (2 · 2) = 4
31, 2eqtr4i 2755 . . . . 5 (2↑2) = (2 · 2)
43oveq2i 7380 . . . 4 ((2↑(𝑁 + 1)) / (2↑2)) = ((2↑(𝑁 + 1)) / (2 · 2))
5 2cn 12237 . . . . . 6 2 ∈ ℂ
6 expp1 14009 . . . . . 6 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
75, 6mpan 690 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
87oveq1d 7384 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2 · 2)) = (((2↑𝑁) · 2) / (2 · 2)))
94, 8eqtrid 2776 . . 3 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) = (((2↑𝑁) · 2) / (2 · 2)))
10 expcl 14020 . . . . 5 ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
115, 10mpan 690 . . . 4 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
12 2cnne0 12367 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
13 divmuldiv 11858 . . . . 5 ((((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1412, 12, 13mpanr12 705 . . . 4 (((2↑𝑁) ∈ ℂ ∧ 2 ∈ ℂ) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
1511, 5, 14sylancl 586 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 · 2)))
16 2div2e1 12298 . . . . 5 (2 / 2) = 1
1716oveq2i 7380 . . . 4 (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) / 2) · 1)
1811halfcld 12403 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ∈ ℂ)
1918mulridd 11167 . . . 4 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · 1) = ((2↑𝑁) / 2))
2017, 19eqtrid 2776 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) / 2) · (2 / 2)) = ((2↑𝑁) / 2))
219, 15, 203eqtr2rd 2771 . 2 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) = ((2↑(𝑁 + 1)) / (2↑2)))
22 2nn0 12435 . . . 4 2 ∈ ℕ0
23 faclbnd 14231 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
2422, 23mpan 690 . . 3 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁)))
25 2re 12236 . . . . 5 2 ∈ ℝ
26 peano2nn0 12458 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
27 reexpcl 14019 . . . . 5 ((2 ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2825, 26, 27sylancr 587 . . . 4 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) ∈ ℝ)
29 faccl 14224 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3029nnred 12177 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
31 4re 12246 . . . . . . 7 4 ∈ ℝ
321, 31eqeltri 2824 . . . . . 6 (2↑2) ∈ ℝ
33 4pos 12269 . . . . . . 7 0 < 4
3433, 1breqtrri 5129 . . . . . 6 0 < (2↑2)
3532, 34pm3.2i 470 . . . . 5 ((2↑2) ∈ ℝ ∧ 0 < (2↑2))
36 ledivmul 12035 . . . . 5 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈ ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3735, 36mp3an3 1452 . . . 4 (((2↑(𝑁 + 1)) ∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3828, 30, 37syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) · (!‘𝑁))))
3924, 38mpbird 257 . 2 (𝑁 ∈ ℕ0 → ((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁))
4021, 39eqbrtrd 5124 1 (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  4c4 12219  0cn0 12418  cexp 14002  !cfa 14214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-fac 14215
This theorem is referenced by:  ege2le3  16032
  Copyright terms: Public domain W3C validator