Proof of Theorem faclbnd2
Step | Hyp | Ref
| Expression |
1 | | sq2 13842 |
. . . . . 6
⊢
(2↑2) = 4 |
2 | | 2t2e4 12067 |
. . . . . 6
⊢ (2
· 2) = 4 |
3 | 1, 2 | eqtr4i 2769 |
. . . . 5
⊢
(2↑2) = (2 · 2) |
4 | 3 | oveq2i 7266 |
. . . 4
⊢
((2↑(𝑁 + 1)) /
(2↑2)) = ((2↑(𝑁 +
1)) / (2 · 2)) |
5 | | 2cn 11978 |
. . . . . 6
⊢ 2 ∈
ℂ |
6 | | expp1 13717 |
. . . . . 6
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
7 | 5, 6 | mpan 686 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (2↑(𝑁 + 1)) =
((2↑𝑁) ·
2)) |
8 | 7 | oveq1d 7270 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((2↑(𝑁 + 1)) /
(2 · 2)) = (((2↑𝑁) · 2) / (2 ·
2))) |
9 | 4, 8 | eqtrid 2790 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((2↑(𝑁 + 1)) /
(2↑2)) = (((2↑𝑁)
· 2) / (2 · 2))) |
10 | | expcl 13728 |
. . . . 5
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℕ0) → (2↑𝑁) ∈ ℂ) |
11 | 5, 10 | mpan 686 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℂ) |
12 | | 2cnne0 12113 |
. . . . 5
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
13 | | divmuldiv 11605 |
. . . . 5
⊢
((((2↑𝑁) ∈
ℂ ∧ 2 ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧
(2 ∈ ℂ ∧ 2 ≠ 0))) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 ·
2))) |
14 | 12, 12, 13 | mpanr12 701 |
. . . 4
⊢
(((2↑𝑁) ∈
ℂ ∧ 2 ∈ ℂ) → (((2↑𝑁) / 2) · (2 / 2)) = (((2↑𝑁) · 2) / (2 ·
2))) |
15 | 11, 5, 14 | sylancl 585 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((2↑𝑁) / 2)
· (2 / 2)) = (((2↑𝑁) · 2) / (2 ·
2))) |
16 | | 2div2e1 12044 |
. . . . 5
⊢ (2 / 2) =
1 |
17 | 16 | oveq2i 7266 |
. . . 4
⊢
(((2↑𝑁) / 2)
· (2 / 2)) = (((2↑𝑁) / 2) · 1) |
18 | 11 | halfcld 12148 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((2↑𝑁) / 2)
∈ ℂ) |
19 | 18 | mulid1d 10923 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (((2↑𝑁) / 2)
· 1) = ((2↑𝑁) /
2)) |
20 | 17, 19 | eqtrid 2790 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((2↑𝑁) / 2)
· (2 / 2)) = ((2↑𝑁) / 2)) |
21 | 9, 15, 20 | 3eqtr2rd 2785 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((2↑𝑁) / 2) =
((2↑(𝑁 + 1)) /
(2↑2))) |
22 | | 2nn0 12180 |
. . . 4
⊢ 2 ∈
ℕ0 |
23 | | faclbnd 13932 |
. . . 4
⊢ ((2
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) →
(2↑(𝑁 + 1)) ≤
((2↑2) · (!‘𝑁))) |
24 | 22, 23 | mpan 686 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (2↑(𝑁 + 1))
≤ ((2↑2) · (!‘𝑁))) |
25 | | 2re 11977 |
. . . . 5
⊢ 2 ∈
ℝ |
26 | | peano2nn0 12203 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
27 | | reexpcl 13727 |
. . . . 5
⊢ ((2
∈ ℝ ∧ (𝑁 +
1) ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) |
28 | 25, 26, 27 | sylancr 586 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (2↑(𝑁 + 1))
∈ ℝ) |
29 | | faccl 13925 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℕ) |
30 | 29 | nnred 11918 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℝ) |
31 | | 4re 11987 |
. . . . . . 7
⊢ 4 ∈
ℝ |
32 | 1, 31 | eqeltri 2835 |
. . . . . 6
⊢
(2↑2) ∈ ℝ |
33 | | 4pos 12010 |
. . . . . . 7
⊢ 0 <
4 |
34 | 33, 1 | breqtrri 5097 |
. . . . . 6
⊢ 0 <
(2↑2) |
35 | 32, 34 | pm3.2i 470 |
. . . . 5
⊢
((2↑2) ∈ ℝ ∧ 0 < (2↑2)) |
36 | | ledivmul 11781 |
. . . . 5
⊢
(((2↑(𝑁 + 1))
∈ ℝ ∧ (!‘𝑁) ∈ ℝ ∧ ((2↑2) ∈
ℝ ∧ 0 < (2↑2))) → (((2↑(𝑁 + 1)) / (2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) ·
(!‘𝑁)))) |
37 | 35, 36 | mp3an3 1448 |
. . . 4
⊢
(((2↑(𝑁 + 1))
∈ ℝ ∧ (!‘𝑁) ∈ ℝ) → (((2↑(𝑁 + 1)) / (2↑2)) ≤
(!‘𝑁) ↔
(2↑(𝑁 + 1)) ≤
((2↑2) · (!‘𝑁)))) |
38 | 28, 30, 37 | syl2anc 583 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((2↑(𝑁 + 1)) /
(2↑2)) ≤ (!‘𝑁) ↔ (2↑(𝑁 + 1)) ≤ ((2↑2) ·
(!‘𝑁)))) |
39 | 24, 38 | mpbird 256 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((2↑(𝑁 + 1)) /
(2↑2)) ≤ (!‘𝑁)) |
40 | 21, 39 | eqbrtrd 5092 |
1
⊢ (𝑁 ∈ ℕ0
→ ((2↑𝑁) / 2)
≤ (!‘𝑁)) |