Proof of Theorem pythagtriplem3
Step | Hyp | Ref
| Expression |
1 | | oveq2 7015 |
. . . . . . 7
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2))) |
2 | 1 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐵↑2) gcd (𝐶↑2))) |
3 | | nnz 11842 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
4 | | zsqcl 13332 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈
ℤ) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℤ) |
6 | 5 | 3ad2ant2 1125 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℤ) |
7 | | nnz 11842 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
8 | | zsqcl 13332 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
ℤ) |
9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℤ) |
10 | 9 | 3ad2ant1 1124 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℤ) |
11 | | gcdadd 15695 |
. . . . . . . . 9
⊢ (((𝐵↑2) ∈ ℤ ∧
(𝐴↑2) ∈ ℤ)
→ ((𝐵↑2) gcd
(𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2)))) |
12 | 6, 10, 11 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2)))) |
13 | | gcdcom 15683 |
. . . . . . . . 9
⊢ (((𝐵↑2) ∈ ℤ ∧
(𝐴↑2) ∈ ℤ)
→ ((𝐵↑2) gcd
(𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
14 | 6, 10, 13 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd (𝐴↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
15 | 12, 14 | eqtr3d 2831 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2))) |
16 | 15 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd ((𝐴↑2) + (𝐵↑2))) = ((𝐴↑2) gcd (𝐵↑2))) |
17 | 2, 16 | eqtr3d 2831 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) gcd (𝐶↑2)) = ((𝐴↑2) gcd (𝐵↑2))) |
18 | | simpl2 1183 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐵 ∈ ℕ) |
19 | | simpl3 1184 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐶 ∈ ℕ) |
20 | | sqgcd 15726 |
. . . . . 6
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2))) |
21 | 18, 19, 20 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐵↑2) gcd (𝐶↑2))) |
22 | | simpl1 1182 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐴 ∈ ℕ) |
23 | | sqgcd 15726 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) |
24 | 22, 18, 23 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) |
25 | 17, 21, 24 | 3eqtr4d 2839 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2)) |
26 | 25 | 3adant3 1123 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = ((𝐴 gcd 𝐵)↑2)) |
27 | | simp3l 1192 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴 gcd 𝐵) = 1) |
28 | 27 | oveq1d 7022 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐴 gcd 𝐵)↑2) = (1↑2)) |
29 | 26, 28 | eqtrd 2829 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐵 gcd 𝐶)↑2) = (1↑2)) |
30 | 3 | 3ad2ant2 1125 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
31 | | nnz 11842 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
32 | 31 | 3ad2ant3 1126 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
33 | 30, 32 | gcdcld 15678 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈
ℕ0) |
34 | 33 | nn0red 11793 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 gcd 𝐶) ∈ ℝ) |
35 | 34 | 3ad2ant1 1124 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) ∈ ℝ) |
36 | 33 | nn0ge0d 11795 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐵 gcd 𝐶)) |
37 | 36 | 3ad2ant1 1124 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐵 gcd 𝐶)) |
38 | | 1re 10476 |
. . . 4
⊢ 1 ∈
ℝ |
39 | | 0le1 11000 |
. . . 4
⊢ 0 ≤
1 |
40 | | sq11 13334 |
. . . 4
⊢ ((((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1))
→ (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔
(𝐵 gcd 𝐶) = 1)) |
41 | 38, 39, 40 | mpanr12 701 |
. . 3
⊢ (((𝐵 gcd 𝐶) ∈ ℝ ∧ 0 ≤ (𝐵 gcd 𝐶)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1)) |
42 | 35, 37, 41 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐵 gcd 𝐶)↑2) = (1↑2) ↔ (𝐵 gcd 𝐶) = 1)) |
43 | 29, 42 | mpbid 233 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1) |