| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsgt0d | Structured version Visualization version GIF version | ||
| Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsgt0d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulsgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| mulsgt0d.3 | ⊢ (𝜑 → 0s <s 𝐴) |
| mulsgt0d.4 | ⊢ (𝜑 → 0s <s 𝐵) |
| Ref | Expression |
|---|---|
| mulsgt0d | ⊢ (𝜑 → 0s <s (𝐴 ·s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulsgt0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | mulsgt0d.3 | . 2 ⊢ (𝜑 → 0s <s 𝐴) | |
| 3 | mulsgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | mulsgt0d.4 | . 2 ⊢ (𝜑 → 0s <s 𝐵) | |
| 5 | mulsgt0 28089 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0s <s (𝐴 ·s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 No csur 27584 <s cslt 27585 0s c0s 27772 ·s cmuls 28051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27774 df-made 27794 df-old 27795 df-left 27797 df-right 27798 df-norec 27887 df-norec2 27898 df-adds 27909 df-negs 27969 df-subs 27970 df-muls 28052 |
| This theorem is referenced by: mulsge0d 28091 sltmul2 28116 nnmulscl 28281 expsgt0 28366 |
| Copyright terms: Public domain | W3C validator |