![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulsgt0 | Structured version Visualization version GIF version |
Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
Ref | Expression |
---|---|
mulsgt0 | ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27886 | . . . 4 ⊢ 0s ∈ No | |
2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s ∈ No ) |
3 | simpll 767 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) | |
4 | simprl 771 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) | |
5 | simplr 769 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
6 | simprr 773 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
7 | 2, 3, 2, 4, 5, 6 | sltmuld 28178 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s ))) |
8 | muls02 28182 | . . . . 5 ⊢ (𝐵 ∈ No → ( 0s ·s 𝐵) = 0s ) | |
9 | 4, 8 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s ) |
10 | muls02 28182 | . . . . . 6 ⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) | |
11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ( 0s ·s 0s ) = 0s |
12 | 11 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s ) |
13 | 9, 12 | oveq12d 7449 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s )) |
14 | subsid 28114 | . . . 4 ⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) | |
15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ( 0s -s 0s ) = 0s |
16 | 13, 15 | eqtrdi 2791 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s ) |
17 | muls01 28153 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
18 | 3, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s ) |
19 | 18 | oveq2d 7447 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s )) |
20 | mulscl 28175 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
21 | 20 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No ) |
22 | subsid1 28113 | . . . 4 ⊢ ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) | |
23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) |
24 | 19, 23 | eqtrd 2775 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵)) |
25 | 7, 16, 24 | 3brtr3d 5179 | 1 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 No csur 27699 <s cslt 27700 0s c0s 27882 -s csubs 28067 ·s cmuls 28147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-1o 8505 df-2o 8506 df-nadd 8703 df-no 27702 df-slt 27703 df-bday 27704 df-sle 27805 df-sslt 27841 df-scut 27843 df-0s 27884 df-made 27901 df-old 27902 df-left 27904 df-right 27905 df-norec 27986 df-norec2 27997 df-adds 28008 df-negs 28068 df-subs 28069 df-muls 28148 |
This theorem is referenced by: mulsgt0d 28186 |
Copyright terms: Public domain | W3C validator |