| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsgt0 | ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27714 | . . . 4 ⊢ 0s ∈ No | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s ∈ No ) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) | |
| 4 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
| 6 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
| 7 | 2, 3, 2, 4, 5, 6 | sltmuld 28016 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s ))) |
| 8 | muls02 28020 | . . . . 5 ⊢ (𝐵 ∈ No → ( 0s ·s 𝐵) = 0s ) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s ) |
| 10 | muls02 28020 | . . . . . 6 ⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ( 0s ·s 0s ) = 0s |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s ) |
| 13 | 9, 12 | oveq12d 7387 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s )) |
| 14 | subsid 27949 | . . . 4 ⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ( 0s -s 0s ) = 0s |
| 16 | 13, 15 | eqtrdi 2780 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s ) |
| 17 | muls01 27991 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s ) |
| 19 | 18 | oveq2d 7385 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s )) |
| 20 | mulscl 28013 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 21 | 20 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No ) |
| 22 | subsid1 27948 | . . . 4 ⊢ ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) |
| 24 | 19, 23 | eqtrd 2764 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵)) |
| 25 | 7, 16, 24 | 3brtr3d 5133 | 1 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 No csur 27527 <s cslt 27528 0s c0s 27710 -s csubs 27902 ·s cmuls 27985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27530 df-slt 27531 df-bday 27532 df-sle 27633 df-sslt 27669 df-scut 27671 df-0s 27712 df-made 27731 df-old 27732 df-left 27734 df-right 27735 df-norec 27821 df-norec2 27832 df-adds 27843 df-negs 27903 df-subs 27904 df-muls 27986 |
| This theorem is referenced by: mulsgt0d 28024 |
| Copyright terms: Public domain | W3C validator |