| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsgt0 | ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27795 | . . . 4 ⊢ 0s ∈ No | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s ∈ No ) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) | |
| 4 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
| 6 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
| 7 | 2, 3, 2, 4, 5, 6 | sltmuld 28097 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s ))) |
| 8 | muls02 28101 | . . . . 5 ⊢ (𝐵 ∈ No → ( 0s ·s 𝐵) = 0s ) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s ) |
| 10 | muls02 28101 | . . . . . 6 ⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ( 0s ·s 0s ) = 0s |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s ) |
| 13 | 9, 12 | oveq12d 7428 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s )) |
| 14 | subsid 28030 | . . . 4 ⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ( 0s -s 0s ) = 0s |
| 16 | 13, 15 | eqtrdi 2787 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s ) |
| 17 | muls01 28072 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s ) |
| 19 | 18 | oveq2d 7426 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s )) |
| 20 | mulscl 28094 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 21 | 20 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No ) |
| 22 | subsid1 28029 | . . . 4 ⊢ ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) |
| 24 | 19, 23 | eqtrd 2771 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵)) |
| 25 | 7, 16, 24 | 3brtr3d 5155 | 1 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 No csur 27608 <s cslt 27609 0s c0s 27791 -s csubs 27983 ·s cmuls 28066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-nadd 8683 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 df-0s 27793 df-made 27812 df-old 27813 df-left 27815 df-right 27816 df-norec 27902 df-norec2 27913 df-adds 27924 df-negs 27984 df-subs 27985 df-muls 28067 |
| This theorem is referenced by: mulsgt0d 28105 |
| Copyright terms: Public domain | W3C validator |