| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsgt0 | ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27770 | . . . 4 ⊢ 0s ∈ No | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s ∈ No ) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) | |
| 4 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
| 6 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
| 7 | 2, 3, 2, 4, 5, 6 | sltmuld 28076 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s ))) |
| 8 | muls02 28080 | . . . . 5 ⊢ (𝐵 ∈ No → ( 0s ·s 𝐵) = 0s ) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s ) |
| 10 | muls02 28080 | . . . . . 6 ⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ( 0s ·s 0s ) = 0s |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s ) |
| 13 | 9, 12 | oveq12d 7364 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s )) |
| 14 | subsid 28009 | . . . 4 ⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ( 0s -s 0s ) = 0s |
| 16 | 13, 15 | eqtrdi 2782 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s ) |
| 17 | muls01 28051 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s ) |
| 19 | 18 | oveq2d 7362 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s )) |
| 20 | mulscl 28073 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 21 | 20 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No ) |
| 22 | subsid1 28008 | . . . 4 ⊢ ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) |
| 24 | 19, 23 | eqtrd 2766 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵)) |
| 25 | 7, 16, 24 | 3brtr3d 5120 | 1 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 No csur 27578 <s cslt 27579 0s c0s 27766 -s csubs 27962 ·s cmuls 28045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27581 df-slt 27582 df-bday 27583 df-sle 27684 df-sslt 27721 df-scut 27723 df-0s 27768 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-norec2 27892 df-adds 27903 df-negs 27963 df-subs 27964 df-muls 28046 |
| This theorem is referenced by: mulsgt0d 28084 |
| Copyright terms: Public domain | W3C validator |