| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsgt0 | Structured version Visualization version GIF version | ||
| Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsgt0 | ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno 27740 | . . . 4 ⊢ 0s ∈ No | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s ∈ No ) |
| 3 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐴 ∈ No ) | |
| 4 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 𝐵 ∈ No ) | |
| 5 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐴) | |
| 6 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s 𝐵) | |
| 7 | 2, 3, 2, 4, 5, 6 | sltmuld 28045 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s ))) |
| 8 | muls02 28049 | . . . . 5 ⊢ (𝐵 ∈ No → ( 0s ·s 𝐵) = 0s ) | |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s ) |
| 10 | muls02 28049 | . . . . . 6 ⊢ ( 0s ∈ No → ( 0s ·s 0s ) = 0s ) | |
| 11 | 1, 10 | ax-mp 5 | . . . . 5 ⊢ ( 0s ·s 0s ) = 0s |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s ) |
| 13 | 9, 12 | oveq12d 7367 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s )) |
| 14 | subsid 27978 | . . . 4 ⊢ ( 0s ∈ No → ( 0s -s 0s ) = 0s ) | |
| 15 | 1, 14 | ax-mp 5 | . . 3 ⊢ ( 0s -s 0s ) = 0s |
| 16 | 13, 15 | eqtrdi 2780 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s ) |
| 17 | muls01 28020 | . . . . 5 ⊢ (𝐴 ∈ No → (𝐴 ·s 0s ) = 0s ) | |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s ) |
| 19 | 18 | oveq2d 7365 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s )) |
| 20 | mulscl 28042 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ·s 𝐵) ∈ No ) | |
| 21 | 20 | ad2ant2r 747 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No ) |
| 22 | subsid1 27977 | . . . 4 ⊢ ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵)) |
| 24 | 19, 23 | eqtrd 2764 | . 2 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵)) |
| 25 | 7, 16, 24 | 3brtr3d 5123 | 1 ⊢ (((𝐴 ∈ No ∧ 0s <s 𝐴) ∧ (𝐵 ∈ No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 No csur 27549 <s cslt 27550 0s c0s 27736 -s csubs 27931 ·s cmuls 28014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-norec2 27861 df-adds 27872 df-negs 27932 df-subs 27933 df-muls 28015 |
| This theorem is referenced by: mulsgt0d 28053 |
| Copyright terms: Public domain | W3C validator |