MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsgt0 Structured version   Visualization version   GIF version

Theorem mulsgt0 28083
Description: The product of two positive surreals is positive. Theorem 9 of [Conway] p. 20. (Contributed by Scott Fenton, 6-Mar-2025.)
Assertion
Ref Expression
mulsgt0 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵))

Proof of Theorem mulsgt0
StepHypRef Expression
1 0sno 27770 . . . 4 0s No
21a1i 11 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s No )
3 simpll 766 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 𝐴 No )
4 simprl 770 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 𝐵 No )
5 simplr 768 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s <s 𝐴)
6 simprr 772 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s <s 𝐵)
72, 3, 2, 4, 5, 6sltmuld 28076 . 2 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )))
8 muls02 28080 . . . . 5 (𝐵 No → ( 0s ·s 𝐵) = 0s )
94, 8syl 17 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → ( 0s ·s 𝐵) = 0s )
10 muls02 28080 . . . . . 6 ( 0s No → ( 0s ·s 0s ) = 0s )
111, 10ax-mp 5 . . . . 5 ( 0s ·s 0s ) = 0s
1211a1i 11 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → ( 0s ·s 0s ) = 0s )
139, 12oveq12d 7364 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = ( 0s -s 0s ))
14 subsid 28009 . . . 4 ( 0s No → ( 0s -s 0s ) = 0s )
151, 14ax-mp 5 . . 3 ( 0s -s 0s ) = 0s
1613, 15eqtrdi 2782 . 2 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → (( 0s ·s 𝐵) -s ( 0s ·s 0s )) = 0s )
17 muls01 28051 . . . . 5 (𝐴 No → (𝐴 ·s 0s ) = 0s )
183, 17syl 17 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → (𝐴 ·s 0s ) = 0s )
1918oveq2d 7362 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = ((𝐴 ·s 𝐵) -s 0s ))
20 mulscl 28073 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
2120ad2ant2r 747 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ No )
22 subsid1 28008 . . . 4 ((𝐴 ·s 𝐵) ∈ No → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵))
2321, 22syl 17 . . 3 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s 0s ) = (𝐴 ·s 𝐵))
2419, 23eqtrd 2766 . 2 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) -s (𝐴 ·s 0s )) = (𝐴 ·s 𝐵))
257, 16, 243brtr3d 5120 1 (((𝐴 No ∧ 0s <s 𝐴) ∧ (𝐵 No ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346   No csur 27578   <s cslt 27579   0s c0s 27766   -s csubs 27962   ·s cmuls 28045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046
This theorem is referenced by:  mulsgt0d  28084
  Copyright terms: Public domain W3C validator