MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulscl Structured version   Visualization version   GIF version

Theorem nnmulscl 28296
Description: The positive surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnmulscl ((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs)

Proof of Theorem nnmulscl
StepHypRef Expression
1 n0mulscl 28294 . . . 4 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
21ad2ant2r 747 . . 3 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ ℕ0s)
3 simpll 766 . . . . 5 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 ∈ ℕ0s)
43n0snod 28275 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 No )
5 simprl 770 . . . . 5 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 ∈ ℕ0s)
65n0snod 28275 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 No )
7 simplr 768 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐴)
8 simprr 772 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐵)
94, 6, 7, 8mulsgt0d 28105 . . 3 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵))
102, 9jca 511 . 2 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 ·s 𝐵)))
11 elnns2 28290 . . 3 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
12 elnns2 28290 . . 3 (𝐵 ∈ ℕs ↔ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵))
1311, 12anbi12i 628 . 2 ((𝐴 ∈ ℕs𝐵 ∈ ℕs) ↔ ((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)))
14 elnns2 28290 . 2 ((𝐴 ·s 𝐵) ∈ ℕs ↔ ((𝐴 ·s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 ·s 𝐵)))
1510, 13, 143imtr4i 292 1 ((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5124  (class class class)co 7410   <s cslt 27609   0s c0s 27791   ·s cmuls 28066  0scnn0s 28263  scnns 28264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-n0s 28265  df-nns 28266
This theorem is referenced by:  zmulscld  28342  nnexpscl  28376  remulscllem1  28408  remulscllem2  28409
  Copyright terms: Public domain W3C validator