MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulscl Structured version   Visualization version   GIF version

Theorem nnmulscl 28287
Description: The positive surreal integers are closed under multiplication. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnmulscl ((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs)

Proof of Theorem nnmulscl
StepHypRef Expression
1 n0mulscl 28285 . . . 4 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕ0s) → (𝐴 ·s 𝐵) ∈ ℕ0s)
21ad2ant2r 747 . . 3 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → (𝐴 ·s 𝐵) ∈ ℕ0s)
3 simpll 766 . . . . 5 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 ∈ ℕ0s)
43n0snod 28267 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐴 No )
5 simprl 770 . . . . 5 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 ∈ ℕ0s)
65n0snod 28267 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 𝐵 No )
7 simplr 768 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐴)
8 simprr 772 . . . 4 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s 𝐵)
94, 6, 7, 8mulsgt0d 28108 . . 3 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → 0s <s (𝐴 ·s 𝐵))
102, 9jca 511 . 2 (((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)) → ((𝐴 ·s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 ·s 𝐵)))
11 elnns2 28281 . . 3 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
12 elnns2 28281 . . 3 (𝐵 ∈ ℕs ↔ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵))
1311, 12anbi12i 628 . 2 ((𝐴 ∈ ℕs𝐵 ∈ ℕs) ↔ ((𝐴 ∈ ℕ0s ∧ 0s <s 𝐴) ∧ (𝐵 ∈ ℕ0s ∧ 0s <s 𝐵)))
14 elnns2 28281 . 2 ((𝐴 ·s 𝐵) ∈ ℕs ↔ ((𝐴 ·s 𝐵) ∈ ℕ0s ∧ 0s <s (𝐴 ·s 𝐵)))
1510, 13, 143imtr4i 292 1 ((𝐴 ∈ ℕs𝐵 ∈ ℕs) → (𝐴 ·s 𝐵) ∈ ℕs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5123  (class class class)co 7413   <s cslt 27622   0s c0s 27804   ·s cmuls 28069  0scnn0s 28255  scnns 28256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-nadd 8686  df-no 27624  df-slt 27625  df-bday 27626  df-sle 27727  df-sslt 27763  df-scut 27765  df-0s 27806  df-1s 27807  df-made 27823  df-old 27824  df-left 27826  df-right 27827  df-norec 27908  df-norec2 27919  df-adds 27930  df-negs 27990  df-subs 27991  df-muls 28070  df-n0s 28257  df-nns 28258
This theorem is referenced by:  zmulscld  28320  remulscllem1  28369  remulscllem2  28370
  Copyright terms: Public domain W3C validator