MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subge0 Structured version   Visualization version   GIF version

Theorem subge0 11774
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subge0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))

Proof of Theorem subge0
StepHypRef Expression
1 0red 11262 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 leaddsub 11737 . . 3 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
51, 2, 3, 4syl3anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
62recnd 11287 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
76addlidd 11460 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + 𝐵) = 𝐵)
87breq1d 5158 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴𝐵𝐴))
95, 8bitr3d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156  cle 11294  cmin 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  subge0i  11814  subge0d  11851  mulsuble0b  12138  znn0sub  12662  uzsubsubfz  13583  difelfzle  13678  difelfznle  13679  fracge0  13841  modge0  13916  2submod  13970  expnbnd  14268  pfxccatin12lem2  14766  swrdccat  14770  repswswrd  14819  cshwidxmod  14838  abssubge0  15363  blcvx  24834  iirev  24970  iihalf2  24975  ovolfsf  25520  cosq14ge0  26568  sinord  26591  resinf1o  26593  ang180lem2  26868  acosbnd  26958  ftalem5  27135  mumullem2  27238  rpvmasumlem  27546  dchrisum0flblem1  27567  brbtwn2  28935  colinearalglem4  28939  ax5seglem3  28961  resconn  35231  fz0n  35711  sin2h  37597  cos2h  37598  tan2h  37599  ftc1anclem5  37684  dvasin  37691  jm2.23  42985  subsubelfzo0  47276  gpgedgvtx1  47955  m1modmmod  48371
  Copyright terms: Public domain W3C validator