MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subge0 Structured version   Visualization version   GIF version

Theorem subge0 11777
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subge0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))

Proof of Theorem subge0
StepHypRef Expression
1 0red 11265 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 leaddsub 11740 . . 3 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
51, 2, 3, 4syl3anc 1372 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
62recnd 11290 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
76addlidd 11463 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + 𝐵) = 𝐵)
87breq1d 5152 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴𝐵𝐴))
95, 8bitr3d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155  0cc0 11156   + caddc 11159  cle 11297  cmin 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496
This theorem is referenced by:  subge0i  11817  subge0d  11854  mulsuble0b  12141  znn0sub  12666  uzsubsubfz  13587  difelfzle  13682  difelfznle  13683  fracge0  13845  modge0  13920  2submod  13974  expnbnd  14272  pfxccatin12lem2  14770  swrdccat  14774  repswswrd  14823  cshwidxmod  14842  abssubge0  15367  blcvx  24820  iirev  24957  iihalf2  24962  ovolfsf  25507  cosq14ge0  26554  sinord  26577  resinf1o  26579  ang180lem2  26854  acosbnd  26944  ftalem5  27121  mumullem2  27224  rpvmasumlem  27532  dchrisum0flblem1  27553  brbtwn2  28921  colinearalglem4  28925  ax5seglem3  28947  resconn  35252  fz0n  35732  sin2h  37618  cos2h  37619  tan2h  37620  ftc1anclem5  37705  dvasin  37712  jm2.23  43013  subsubelfzo0  47343  gpgedgvtx1  48025  m1modmmod  48447
  Copyright terms: Public domain W3C validator