MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subge0 Structured version   Visualization version   GIF version

Theorem subge0 11418
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subge0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))

Proof of Theorem subge0
StepHypRef Expression
1 0red 10909 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ)
2 simpr 484 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simpl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
4 leaddsub 11381 . . 3 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
51, 2, 3, 4syl3anc 1369 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴𝐵)))
62recnd 10934 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
76addid2d 11106 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + 𝐵) = 𝐵)
87breq1d 5080 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴𝐵𝐴))
95, 8bitr3d 280 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  cle 10941  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  subge0i  11458  subge0d  11495  mulsuble0b  11777  znn0sub  12297  uzsubsubfz  13207  difelfzle  13298  difelfznle  13299  fracge0  13452  modge0  13527  2submod  13580  expnbnd  13875  pfxccatin12lem2  14372  swrdccat  14376  repswswrd  14425  cshwidxmod  14444  abssubge0  14967  blcvx  23867  iirev  23998  iihalf2  24002  ovolfsf  24540  cosq14ge0  25573  sinord  25595  resinf1o  25597  ang180lem2  25865  acosbnd  25955  ftalem5  26131  mumullem2  26234  rpvmasumlem  26540  dchrisum0flblem1  26561  brbtwn2  27176  colinearalglem4  27180  ax5seglem3  27202  resconn  33108  fz0n  33602  sin2h  35694  cos2h  35695  tan2h  35696  ftc1anclem5  35781  dvasin  35788  jm2.23  40734  subsubelfzo0  44706  m1modmmod  45755
  Copyright terms: Public domain W3C validator