Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subge0 | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
subge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10836 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ) | |
2 | simpr 488 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
3 | simpl 486 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | leaddsub 11308 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) | |
5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
6 | 2 | recnd 10861 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ) |
7 | 6 | addid2d 11033 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + 𝐵) = 𝐵) |
8 | 7 | breq1d 5063 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 𝐴)) |
9 | 5, 8 | bitr3d 284 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 0cc0 10729 + caddc 10732 ≤ cle 10868 − cmin 11062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 |
This theorem is referenced by: subge0i 11385 subge0d 11422 mulsuble0b 11704 znn0sub 12224 uzsubsubfz 13134 difelfzle 13225 difelfznle 13226 fracge0 13379 modge0 13452 2submod 13505 expnbnd 13799 pfxccatin12lem2 14296 swrdccat 14300 repswswrd 14349 cshwidxmod 14368 abssubge0 14891 blcvx 23695 iirev 23826 iihalf2 23830 ovolfsf 24368 cosq14ge0 25401 sinord 25423 resinf1o 25425 ang180lem2 25693 acosbnd 25783 ftalem5 25959 mumullem2 26062 rpvmasumlem 26368 dchrisum0flblem1 26389 brbtwn2 26996 colinearalglem4 27000 ax5seglem3 27022 resconn 32921 fz0n 33414 sin2h 35504 cos2h 35505 tan2h 35506 ftc1anclem5 35591 dvasin 35598 jm2.23 40521 subsubelfzo0 44491 m1modmmod 45540 |
Copyright terms: Public domain | W3C validator |