![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subge0 | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
subge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11213 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ∈ ℝ) | |
2 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
3 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
4 | leaddsub 11686 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
6 | 2 | recnd 11238 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ) |
7 | 6 | addlidd 11411 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 + 𝐵) = 𝐵) |
8 | 7 | breq1d 5157 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 + 𝐵) ≤ 𝐴 ↔ 𝐵 ≤ 𝐴)) |
9 | 5, 8 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 0cc0 11106 + caddc 11109 ≤ cle 11245 − cmin 11440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: subge0i 11763 subge0d 11800 mulsuble0b 12082 znn0sub 12605 uzsubsubfz 13519 difelfzle 13610 difelfznle 13611 fracge0 13765 modge0 13840 2submod 13893 expnbnd 14191 pfxccatin12lem2 14677 swrdccat 14681 repswswrd 14730 cshwidxmod 14749 abssubge0 15270 blcvx 24305 iirev 24436 iihalf2 24440 ovolfsf 24979 cosq14ge0 26012 sinord 26034 resinf1o 26036 ang180lem2 26304 acosbnd 26394 ftalem5 26570 mumullem2 26673 rpvmasumlem 26979 dchrisum0flblem1 27000 brbtwn2 28152 colinearalglem4 28156 ax5seglem3 28178 resconn 34225 fz0n 34688 sin2h 36466 cos2h 36467 tan2h 36468 ftc1anclem5 36553 dvasin 36560 jm2.23 41720 subsubelfzo0 46020 m1modmmod 47160 |
Copyright terms: Public domain | W3C validator |