MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvllmuli Structured version   Visualization version   GIF version

Theorem mvllmuli 11280
Description: Move LHS left multiplication to RHS. Uses divcan4i 11194. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvllmuli.1 𝐴 ∈ ℂ
mvllmuli.2 𝐵 ∈ ℂ
mvllmuli.3 𝐴 ≠ 0
mvllmuli.4 (𝐴 · 𝐵) = 𝐶
Assertion
Ref Expression
mvllmuli 𝐵 = (𝐶 / 𝐴)

Proof of Theorem mvllmuli
StepHypRef Expression
1 mvllmuli.2 . . 3 𝐵 ∈ ℂ
2 mvllmuli.1 . . 3 𝐴 ∈ ℂ
3 mvllmuli.3 . . 3 𝐴 ≠ 0
41, 2, 3divcan4i 11194 . 2 ((𝐵 · 𝐴) / 𝐴) = 𝐵
5 mvllmuli.4 . . . 4 (𝐴 · 𝐵) = 𝐶
62, 1, 5mulcomli 10455 . . 3 (𝐵 · 𝐴) = 𝐶
76oveq1i 6992 . 2 ((𝐵 · 𝐴) / 𝐴) = (𝐶 / 𝐴)
84, 7eqtr3i 2806 1 𝐵 = (𝐶 / 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  wcel 2051  wne 2969  (class class class)co 6982  cc 10339  0cc0 10341   · cmul 10346   / cdiv 11104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-mpt 5014  df-id 5316  df-po 5330  df-so 5331  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105
This theorem is referenced by:  sincos6thpi  24819  polid2i  28728  i2linesi  44281
  Copyright terms: Public domain W3C validator