| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
| 2 | 1 | eleq2d 2826 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
| 3 | | eqid 2736 |
. . . . . . . 8
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
| 4 | | omelon 9687 |
. . . . . . . . 9
⊢ ω
∈ On |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
| 6 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
| 7 | 3, 5, 6 | cantnfs 9707 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 8 | 2, 7 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 9 | | simpl 482 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω) |
| 10 | 8, 9 | biimtrdi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹:𝑋⟶ω)) |
| 11 | | simpl 482 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝐹 ∈ 𝑆) |
| 12 | 10, 11 | impel 505 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐹:𝑋⟶ω) |
| 13 | 12 | ffnd 6736 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐹 Fn 𝑋) |
| 14 | 1 | eleq2d 2826 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom (ω CNF 𝑋))) |
| 15 | 3, 5, 6 | cantnfs 9707 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
| 16 | 14, 15 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
| 17 | | simpl 482 |
. . . . . 6
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω) |
| 18 | 16, 17 | biimtrdi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺:𝑋⟶ω)) |
| 19 | | simpr 484 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝐺 ∈ 𝑆) |
| 20 | 18, 19 | impel 505 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐺:𝑋⟶ω) |
| 21 | 20 | ffnd 6736 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐺 Fn 𝑋) |
| 22 | | simpll 766 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝑋 ∈ On) |
| 23 | | inidm 4226 |
. . 3
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 24 | 13, 21, 22, 22, 23 | offn 7711 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
| 25 | 21, 13, 22, 22, 23 | offn 7711 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐺 ∘f +o 𝐹) Fn 𝑋) |
| 26 | 12 | ffvelcdmda 7103 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
| 27 | 20 | ffvelcdmda 7103 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ω) |
| 28 | | nnacom 8656 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ω ∧ (𝐺‘𝑥) ∈ ω) → ((𝐹‘𝑥) +o (𝐺‘𝑥)) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
| 29 | 26, 27, 28 | syl2anc 584 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o (𝐺‘𝑥)) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
| 30 | 13 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
| 31 | 21 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐺 Fn 𝑋) |
| 32 | | simplll 774 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
| 33 | | simpr 484 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 34 | | fnfvof 7715 |
. . . 4
⊢ (((𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
| 35 | 30, 31, 32, 33, 34 | syl22anc 838 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
| 36 | | fnfvof 7715 |
. . . 4
⊢ (((𝐺 Fn 𝑋 ∧ 𝐹 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐺 ∘f +o 𝐹)‘𝑥) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
| 37 | 31, 30, 32, 33, 36 | syl22anc 838 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐺 ∘f +o 𝐹)‘𝑥) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
| 38 | 29, 35, 37 | 3eqtr4d 2786 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐺 ∘f +o 𝐹)‘𝑥)) |
| 39 | 24, 25, 38 | eqfnfvd 7053 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) |