Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfcom Structured version   Visualization version   GIF version

Theorem naddcnfcom 42937
Description: Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnfcom (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem naddcnfcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2811 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2725 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9671 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 481 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9691 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 481 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
108, 9biimtrdi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
11 simpl 481 . . . . 5 ((𝐹𝑆𝐺𝑆) → 𝐹𝑆)
1210, 11impel 504 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐹:𝑋⟶ω)
1312ffnd 6724 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2811 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9691 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 481 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1816, 17biimtrdi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
19 simpr 483 . . . . 5 ((𝐹𝑆𝐺𝑆) → 𝐺𝑆)
2018, 19impel 504 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐺:𝑋⟶ω)
2120ffnd 6724 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐺 Fn 𝑋)
22 simpll 765 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝑋 ∈ On)
23 inidm 4217 . . 3 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7698 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
2521, 13, 22, 22, 23offn 7698 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐺f +o 𝐹) Fn 𝑋)
2612ffvelcdmda 7093 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
2720ffvelcdmda 7093 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
28 nnacom 8638 . . . 4 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω) → ((𝐹𝑥) +o (𝐺𝑥)) = ((𝐺𝑥) +o (𝐹𝑥)))
2926, 27, 28syl2anc 582 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o (𝐺𝑥)) = ((𝐺𝑥) +o (𝐹𝑥)))
3013adantr 479 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
3121adantr 479 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
32 simplll 773 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
33 simpr 483 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝑥𝑋)
34 fnfvof 7702 . . . 4 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
3530, 31, 32, 33, 34syl22anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
36 fnfvof 7702 . . . 4 (((𝐺 Fn 𝑋𝐹 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐹)‘𝑥) = ((𝐺𝑥) +o (𝐹𝑥)))
3731, 30, 32, 33, 36syl22anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐹)‘𝑥) = ((𝐺𝑥) +o (𝐹𝑥)))
3829, 35, 373eqtr4d 2775 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐺f +o 𝐹)‘𝑥))
3924, 25, 38eqfnfvd 7042 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  c0 4322   class class class wbr 5149  dom cdm 5678  Oncon0 6371   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  ωcom 7871   +o coa 8484   finSupp cfsupp 9387   CNF ccnf 9686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seqom 8469  df-oadd 8491  df-map 8847  df-cnf 9687
This theorem is referenced by:  naddcnfid2  42939
  Copyright terms: Public domain W3C validator