Step | Hyp | Ref
| Expression |
1 | | simpr 486 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
2 | 1 | eleq2d 2822 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
3 | | eqid 2736 |
. . . . . . . 8
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
4 | | omelon 9452 |
. . . . . . . . 9
⊢ ω
∈ On |
5 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
6 | | simpl 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
7 | 3, 5, 6 | cantnfs 9472 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
8 | 2, 7 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
9 | | simpl 484 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω) |
10 | 8, 9 | syl6bi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹:𝑋⟶ω)) |
11 | | simpl 484 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝐹 ∈ 𝑆) |
12 | 10, 11 | impel 507 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐹:𝑋⟶ω) |
13 | 12 | ffnd 6631 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐹 Fn 𝑋) |
14 | 1 | eleq2d 2822 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom (ω CNF 𝑋))) |
15 | 3, 5, 6 | cantnfs 9472 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
16 | 14, 15 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
17 | | simpl 484 |
. . . . . 6
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω) |
18 | 16, 17 | syl6bi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺:𝑋⟶ω)) |
19 | | simpr 486 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆) → 𝐺 ∈ 𝑆) |
20 | 18, 19 | impel 507 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐺:𝑋⟶ω) |
21 | 20 | ffnd 6631 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝐺 Fn 𝑋) |
22 | | simpll 765 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → 𝑋 ∈ On) |
23 | | inidm 4158 |
. . 3
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
24 | 13, 21, 22, 22, 23 | offn 7578 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
25 | 21, 13, 22, 22, 23 | offn 7578 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐺 ∘f +o 𝐹) Fn 𝑋) |
26 | 12 | ffvelcdmda 6993 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
27 | 20 | ffvelcdmda 6993 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ω) |
28 | | nnacom 8479 |
. . . 4
⊢ (((𝐹‘𝑥) ∈ ω ∧ (𝐺‘𝑥) ∈ ω) → ((𝐹‘𝑥) +o (𝐺‘𝑥)) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
29 | 26, 27, 28 | syl2anc 585 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o (𝐺‘𝑥)) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
30 | 13 | adantr 482 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
31 | 21 | adantr 482 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐺 Fn 𝑋) |
32 | | simplll 773 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
33 | | simpr 486 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
34 | | fnfvof 7582 |
. . . 4
⊢ (((𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
35 | 30, 31, 32, 33, 34 | syl22anc 837 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
36 | | fnfvof 7582 |
. . . 4
⊢ (((𝐺 Fn 𝑋 ∧ 𝐹 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐺 ∘f +o 𝐹)‘𝑥) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
37 | 31, 30, 32, 33, 36 | syl22anc 837 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐺 ∘f +o 𝐹)‘𝑥) = ((𝐺‘𝑥) +o (𝐹‘𝑥))) |
38 | 29, 35, 37 | 3eqtr4d 2786 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐺 ∘f +o 𝐹)‘𝑥)) |
39 | 24, 25, 38 | eqfnfvd 6944 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) |