Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfcom Structured version   Visualization version   GIF version

Theorem naddcnfcom 43384
Description: Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnfcom (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))

Proof of Theorem naddcnfcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2826 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2736 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9687 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 482 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9707 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 482 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
108, 9biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
11 simpl 482 . . . . 5 ((𝐹𝑆𝐺𝑆) → 𝐹𝑆)
1210, 11impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐹:𝑋⟶ω)
1312ffnd 6736 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2826 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9707 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 482 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1816, 17biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
19 simpr 484 . . . . 5 ((𝐹𝑆𝐺𝑆) → 𝐺𝑆)
2018, 19impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐺:𝑋⟶ω)
2120ffnd 6736 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝐺 Fn 𝑋)
22 simpll 766 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → 𝑋 ∈ On)
23 inidm 4226 . . 3 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7711 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
2521, 13, 22, 22, 23offn 7711 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐺f +o 𝐹) Fn 𝑋)
2612ffvelcdmda 7103 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
2720ffvelcdmda 7103 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
28 nnacom 8656 . . . 4 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω) → ((𝐹𝑥) +o (𝐺𝑥)) = ((𝐺𝑥) +o (𝐹𝑥)))
2926, 27, 28syl2anc 584 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o (𝐺𝑥)) = ((𝐺𝑥) +o (𝐹𝑥)))
3013adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
3121adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
32 simplll 774 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
33 simpr 484 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → 𝑥𝑋)
34 fnfvof 7715 . . . 4 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
3530, 31, 32, 33, 34syl22anc 838 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
36 fnfvof 7715 . . . 4 (((𝐺 Fn 𝑋𝐹 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐹)‘𝑥) = ((𝐺𝑥) +o (𝐹𝑥)))
3731, 30, 32, 33, 36syl22anc 838 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐹)‘𝑥) = ((𝐺𝑥) +o (𝐹𝑥)))
3829, 35, 373eqtr4d 2786 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐺f +o 𝐹)‘𝑥))
3924, 25, 38eqfnfvd 7053 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆)) → (𝐹f +o 𝐺) = (𝐺f +o 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4332   class class class wbr 5142  dom cdm 5684  Oncon0 6383   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  ωcom 7888   +o coa 8504   finSupp cfsupp 9402   CNF ccnf 9702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-seqom 8489  df-oadd 8511  df-map 8869  df-cnf 9703
This theorem is referenced by:  naddcnfid2  43386
  Copyright terms: Public domain W3C validator