Step | Hyp | Ref
| Expression |
1 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) |
2 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 +no 𝑥) = (𝐴 +no ∅)) |
3 | 1, 2 | eqeq12d 2748 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o ∅) = (𝐴 +no ∅))) |
4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅)))) |
5 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) |
6 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no 𝑦)) |
7 | 5, 6 | eqeq12d 2748 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝑦) = (𝐴 +no 𝑦))) |
8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦)))) |
9 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) |
10 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no suc 𝑦)) |
11 | 9, 10 | eqeq12d 2748 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))) |
13 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) |
14 | | oveq2 7413 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝐴 +no 𝑥) = (𝐴 +no 𝐵)) |
15 | 13, 14 | eqeq12d 2748 |
. . . 4
⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝐵) = (𝐴 +no 𝐵))) |
16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))) |
17 | | oa0 8512 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
18 | | naddrid 8678 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴) |
19 | 17, 18 | eqtr4d 2775 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅)) |
20 | | nnon 7857 |
. . . . 5
⊢ (𝑦 ∈ ω → 𝑦 ∈ On) |
21 | | suceq 6427 |
. . . . . . . . 9
⊢ ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦)) |
22 | 21 | adantl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦)) |
23 | | oasuc 8520 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) |
25 | | naddsuc2 42128 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦)) |
26 | 25 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦)) |
27 | 22, 24, 26 | 3eqtr4d 2782 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)) |
28 | 27 | ex 413 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))) |
29 | 28 | expcom 414 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))) |
30 | 20, 29 | syl 17 |
. . . 4
⊢ (𝑦 ∈ ω → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))) |
31 | 30 | a2d 29 |
. . 3
⊢ (𝑦 ∈ ω → ((𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))) |
32 | 4, 8, 12, 16, 19, 31 | finds 7885 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))) |
33 | 32 | impcom 408 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)) |