Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddonnn Structured version   Visualization version   GIF version

Theorem naddonnn 42862
Description: Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025.)
Assertion
Ref Expression
naddonnn ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))

Proof of Theorem naddonnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7422 . . . . 5 (𝑥 = ∅ → (𝐴 +no 𝑥) = (𝐴 +no ∅))
31, 2eqeq12d 2741 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o ∅) = (𝐴 +no ∅)))
43imbi2d 339 . . 3 (𝑥 = ∅ → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))))
5 oveq2 7422 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
6 oveq2 7422 . . . . 5 (𝑥 = 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no 𝑦))
75, 6eqeq12d 2741 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)))
87imbi2d 339 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦))))
9 oveq2 7422 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
10 oveq2 7422 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no suc 𝑦))
119, 10eqeq12d 2741 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
1211imbi2d 339 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
13 oveq2 7422 . . . . 5 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
14 oveq2 7422 . . . . 5 (𝑥 = 𝐵 → (𝐴 +no 𝑥) = (𝐴 +no 𝐵))
1513, 14eqeq12d 2741 . . . 4 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
1615imbi2d 339 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))))
17 oa0 8533 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
18 naddrid 8700 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
1917, 18eqtr4d 2768 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))
20 nnon 7872 . . . . 5 (𝑦 ∈ ω → 𝑦 ∈ On)
21 suceq 6428 . . . . . . . . 9 ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
2221adantl 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
23 oasuc 8541 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2423adantr 479 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
25 naddsuc2 42859 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2625adantr 479 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2722, 24, 263eqtr4d 2775 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))
2827ex 411 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
2928expcom 412 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3020, 29syl 17 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3130a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
324, 8, 12, 16, 19, 31finds 7900 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
3332impcom 406 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  c0 4316  Oncon0 6362  suc csuc 6364  (class class class)co 7414  ωcom 7866   +o coa 8480   +no cnadd 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-oadd 8487  df-nadd 8683
This theorem is referenced by:  naddwordnexlem3  42866  naddwordnexlem4  42868
  Copyright terms: Public domain W3C validator