Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddonnn Structured version   Visualization version   GIF version

Theorem naddonnn 43512
Description: Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025.)
Assertion
Ref Expression
naddonnn ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))

Proof of Theorem naddonnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7360 . . . . 5 (𝑥 = ∅ → (𝐴 +no 𝑥) = (𝐴 +no ∅))
31, 2eqeq12d 2749 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o ∅) = (𝐴 +no ∅)))
43imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))))
5 oveq2 7360 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
6 oveq2 7360 . . . . 5 (𝑥 = 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no 𝑦))
75, 6eqeq12d 2749 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦))))
9 oveq2 7360 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
10 oveq2 7360 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no suc 𝑦))
119, 10eqeq12d 2749 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
1211imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
13 oveq2 7360 . . . . 5 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
14 oveq2 7360 . . . . 5 (𝑥 = 𝐵 → (𝐴 +no 𝑥) = (𝐴 +no 𝐵))
1513, 14eqeq12d 2749 . . . 4 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))))
17 oa0 8437 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
18 naddrid 8604 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
1917, 18eqtr4d 2771 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))
20 nnon 7808 . . . . 5 (𝑦 ∈ ω → 𝑦 ∈ On)
21 suceq 6379 . . . . . . . . 9 ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
2221adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
23 oasuc 8445 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2423adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
25 naddsuc2 8622 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2625adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2722, 24, 263eqtr4d 2778 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))
2827ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
2928expcom 413 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3020, 29syl 17 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3130a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
324, 8, 12, 16, 19, 31finds 7832 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
3332impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  c0 4282  Oncon0 6311  suc csuc 6313  (class class class)co 7352  ωcom 7802   +o coa 8388   +no cnadd 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395  df-nadd 8587
This theorem is referenced by:  naddwordnexlem3  43516  naddwordnexlem4  43518
  Copyright terms: Public domain W3C validator