Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddonnn Structured version   Visualization version   GIF version

Theorem naddonnn 43427
Description: Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025.)
Assertion
Ref Expression
naddonnn ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))

Proof of Theorem naddonnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7354 . . . . 5 (𝑥 = ∅ → (𝐴 +no 𝑥) = (𝐴 +no ∅))
31, 2eqeq12d 2747 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o ∅) = (𝐴 +no ∅)))
43imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))))
5 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
6 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no 𝑦))
75, 6eqeq12d 2747 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦))))
9 oveq2 7354 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
10 oveq2 7354 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +no 𝑥) = (𝐴 +no suc 𝑦))
119, 10eqeq12d 2747 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
1211imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
13 oveq2 7354 . . . . 5 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
14 oveq2 7354 . . . . 5 (𝑥 = 𝐵 → (𝐴 +no 𝑥) = (𝐴 +no 𝐵))
1513, 14eqeq12d 2747 . . . 4 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) = (𝐴 +no 𝑥) ↔ (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
1615imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ On → (𝐴 +o 𝑥) = (𝐴 +no 𝑥)) ↔ (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))))
17 oa0 8431 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
18 naddrid 8598 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
1917, 18eqtr4d 2769 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = (𝐴 +no ∅))
20 nnon 7802 . . . . 5 (𝑦 ∈ ω → 𝑦 ∈ On)
21 suceq 6374 . . . . . . . . 9 ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
2221adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → suc (𝐴 +o 𝑦) = suc (𝐴 +no 𝑦))
23 oasuc 8439 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2423adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
25 naddsuc2 8616 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2625adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +no suc 𝑦) = suc (𝐴 +no 𝑦))
2722, 24, 263eqtr4d 2776 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))
2827ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦)))
2928expcom 413 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3020, 29syl 17 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ On → ((𝐴 +o 𝑦) = (𝐴 +no 𝑦) → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
3130a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ On → (𝐴 +o 𝑦) = (𝐴 +no 𝑦)) → (𝐴 ∈ On → (𝐴 +o suc 𝑦) = (𝐴 +no suc 𝑦))))
324, 8, 12, 16, 19, 31finds 7826 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)))
3332impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4283  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-nadd 8581
This theorem is referenced by:  naddwordnexlem3  43431  naddwordnexlem4  43433
  Copyright terms: Public domain W3C validator