![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsf1o | Structured version Visualization version GIF version |
Description: Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negsf1o | ⊢ -us : No –1-1-onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsf 27878 | . . 3 ⊢ -us : No ⟶ No | |
2 | negs11 27875 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (( -us ‘𝑥) = ( -us ‘𝑦) ↔ 𝑥 = 𝑦)) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (( -us ‘𝑥) = ( -us ‘𝑦) → 𝑥 = 𝑦)) |
4 | 3 | rgen2 3196 | . . 3 ⊢ ∀𝑥 ∈ No ∀𝑦 ∈ No (( -us ‘𝑥) = ( -us ‘𝑦) → 𝑥 = 𝑦) |
5 | dff13 7257 | . . 3 ⊢ ( -us : No –1-1→ No ↔ ( -us : No ⟶ No ∧ ∀𝑥 ∈ No ∀𝑦 ∈ No (( -us ‘𝑥) = ( -us ‘𝑦) → 𝑥 = 𝑦))) | |
6 | 1, 4, 5 | mpbir2an 708 | . 2 ⊢ -us : No –1-1→ No |
7 | negsfo 27879 | . 2 ⊢ -us : No –onto→ No | |
8 | df-f1o 6550 | . 2 ⊢ ( -us : No –1-1-onto→ No ↔ ( -us : No –1-1→ No ∧ -us : No –onto→ No )) | |
9 | 6, 7, 8 | mpbir2an 708 | 1 ⊢ -us : No –1-1-onto→ No |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⟶wf 6539 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 ‘cfv 6543 No csur 27487 -us cnegs 27846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-nadd 8671 df-no 27490 df-slt 27491 df-bday 27492 df-sle 27592 df-sslt 27628 df-scut 27630 df-0s 27671 df-made 27688 df-old 27689 df-left 27691 df-right 27692 df-norec 27769 df-norec2 27780 df-adds 27791 df-negs 27848 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |