MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnadjuALT Structured version   Visualization version   GIF version

Theorem nnadjuALT 9954
Description: Shorter proof of nnadju 9953 using ax-rep 5209. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nnadjuALT ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))

Proof of Theorem nnadjuALT
StepHypRef Expression
1 nnon 7718 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 nnon 7718 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
3 onadju 9949 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴𝐵))
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ≈ (𝐴𝐵))
5 carden2b 9725 . . 3 ((𝐴 +o 𝐵) ≈ (𝐴𝐵) → (card‘(𝐴 +o 𝐵)) = (card‘(𝐴𝐵)))
64, 5syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (card‘(𝐴𝐵)))
7 nnacl 8442 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
8 cardnn 9721 . . 3 ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
97, 8syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
106, 9eqtr3d 2780 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  Oncon0 6266  cfv 6433  (class class class)co 7275  ωcom 7712   +o coa 8294  cen 8730  cdju 9656  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator