MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ipval2 Structured version   Visualization version   GIF version

Theorem 4ipval2 30652
Description: Four times the inner product value ipval3 30653, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
4ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))

Proof of Theorem 4ipval2
StepHypRef Expression
1 dipfval.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . . 4 𝑁 = (normCV𝑈)
5 dipfval.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 30651 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
76oveq2d 7365 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)))
8 simp1 1136 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
91, 2nvgcl 30564 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
101, 4nvcl 30605 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℝ)
118, 9, 10syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℝ)
1211recnd 11143 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℂ)
1312sqcld 14051 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
14 neg1cn 12113 . . . . . . . . . . 11 -1 ∈ ℂ
151, 3nvscl 30570 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
1614, 15mp3an2 1451 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
17163adant2 1131 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
181, 2nvgcl 30564 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
1917, 18syld3an3 1411 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
201, 4nvcl 30605 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
218, 19, 20syl2anc 584 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
2221recnd 11143 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℂ)
2322sqcld 14051 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
2413, 23subcld 11475 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
25 ax-icn 11068 . . . . 5 i ∈ ℂ
261, 3nvscl 30570 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
2725, 26mp3an2 1451 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
28273adant2 1131 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
291, 2nvgcl 30564 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
3028, 29syld3an3 1411 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
311, 4nvcl 30605 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
328, 30, 31syl2anc 584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
3332recnd 11143 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ)
3433sqcld 14051 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
35 negicn 11364 . . . . . . . . . . . 12 -i ∈ ℂ
361, 3nvscl 30570 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
3735, 36mp3an2 1451 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
38373adant2 1131 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
391, 2nvgcl 30564 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋)
4038, 39syld3an3 1411 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋)
411, 4nvcl 30605 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℝ)
428, 40, 41syl2anc 584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℝ)
4342recnd 11143 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℂ)
4443sqcld 14051 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
4534, 44subcld 11475 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
46 mulcl 11093 . . . . 5 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
4725, 45, 46sylancr 587 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
4824, 47addcld 11134 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ)
49 4cn 12213 . . . 4 4 ∈ ℂ
50 4ne0 12236 . . . 4 4 ≠ 0
51 divcan2 11787 . . . 4 ((((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
5249, 50, 51mp3an23 1455 . . 3 (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
5348, 52syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
547, 53eqtrd 2764 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  4c4 12185  cexp 13968  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  normCVcnmcv 30534  ·𝑖OLDcdip 30644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-grpo 30437  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544  df-dip 30645
This theorem is referenced by:  ip1ilem  30770  ipasslem10  30783
  Copyright terms: Public domain W3C validator