MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ipval2 Structured version   Visualization version   GIF version

Theorem 4ipval2 29098
Description: Four times the inner product value ipval3 29099, useful for simplifying certain proofs. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1 𝑋 = (BaseSet‘𝑈)
dipfval.2 𝐺 = ( +𝑣𝑈)
dipfval.4 𝑆 = ( ·𝑠OLD𝑈)
dipfval.6 𝑁 = (normCV𝑈)
dipfval.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
4ipval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))

Proof of Theorem 4ipval2
StepHypRef Expression
1 dipfval.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 dipfval.2 . . . 4 𝐺 = ( +𝑣𝑈)
3 dipfval.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
4 dipfval.6 . . . 4 𝑁 = (normCV𝑈)
5 dipfval.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 29097 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) = (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4))
76oveq2d 7311 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)))
8 simp1 1134 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
91, 2nvgcl 29010 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
101, 4nvcl 29051 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℝ)
118, 9, 10syl2anc 583 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℝ)
1211recnd 11031 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ∈ ℂ)
1312sqcld 13890 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵))↑2) ∈ ℂ)
14 neg1cn 12115 . . . . . . . . . . 11 -1 ∈ ℂ
151, 3nvscl 29016 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
1614, 15mp3an2 1447 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
17163adant2 1129 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
181, 2nvgcl 29010 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
1917, 18syld3an3 1407 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
201, 4nvcl 29051 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
218, 19, 20syl2anc 583 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
2221recnd 11031 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℂ)
2322sqcld 13890 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2) ∈ ℂ)
2413, 23subcld 11360 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) ∈ ℂ)
25 ax-icn 10958 . . . . 5 i ∈ ℂ
261, 3nvscl 29016 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
2725, 26mp3an2 1447 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
28273adant2 1129 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
291, 2nvgcl 29010 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
3028, 29syld3an3 1407 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
311, 4nvcl 29051 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
328, 30, 31syl2anc 583 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
3332recnd 11031 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ)
3433sqcld 13890 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) ∈ ℂ)
35 negicn 11250 . . . . . . . . . . . 12 -i ∈ ℂ
361, 3nvscl 29016 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
3735, 36mp3an2 1447 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
38373adant2 1129 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆𝐵) ∈ 𝑋)
391, 2nvgcl 29010 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋)
4038, 39syld3an3 1407 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋)
411, 4nvcl 29051 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℝ)
428, 40, 41syl2anc 583 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℝ)
4342recnd 11031 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-i𝑆𝐵))) ∈ ℂ)
4443sqcld 13890 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2) ∈ ℂ)
4534, 44subcld 11360 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ)
46 mulcl 10983 . . . . 5 ((i ∈ ℂ ∧ (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)) ∈ ℂ) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
4725, 45, 46sylancr 586 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2))) ∈ ℂ)
4824, 47addcld 11022 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ)
49 4cn 12086 . . . 4 4 ∈ ℂ
50 4ne0 12109 . . . 4 4 ≠ 0
51 divcan2 11669 . . . 4 ((((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
5249, 50, 51mp3an23 1451 . . 3 (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) ∈ ℂ → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
5348, 52syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))) / 4)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
547, 53eqtrd 2773 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (4 · (𝐴𝑃𝐵)) = ((((𝑁‘(𝐴𝐺𝐵))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐵)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐵)))↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1537  wcel 2101  wne 2938  cfv 6447  (class class class)co 7295  cc 10897  cr 10898  0cc0 10899  1c1 10900  ici 10901   + caddc 10902   · cmul 10904  cmin 11233  -cneg 11234   / cdiv 11660  2c2 12056  4c4 12058  cexp 13810  NrmCVeccnv 28974   +𝑣 cpv 28975  BaseSetcba 28976   ·𝑠OLD cns 28977  normCVcnmcv 28980  ·𝑖OLDcdip 29090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-fzo 13411  df-seq 13750  df-exp 13811  df-hash 14073  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-clim 15225  df-sum 15426  df-grpo 28883  df-ablo 28935  df-vc 28949  df-nv 28982  df-va 28985  df-ba 28986  df-sm 28987  df-0v 28988  df-nmcv 28990  df-dip 29091
This theorem is referenced by:  ip1ilem  29216  ipasslem10  29229
  Copyright terms: Public domain W3C validator