MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdif Structured version   Visualization version   GIF version

Theorem nvdif 28449
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvdif ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))

Proof of Theorem nvdif
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
32a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ ℂ)
4 simp3 1135 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 nvdif.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
6 nvdif.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 28409 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
82, 7mp3an2 1446 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
983adant3 1129 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐴) ∈ 𝑋)
10 nvdif.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
115, 10, 6nvdi 28413 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋)) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
121, 3, 4, 9, 11syl13anc 1369 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
135, 6nvnegneg 28432 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
14133adant3 1129 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
1514oveq2d 7151 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺𝐴))
165, 6nvscl 28409 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
172, 16mp3an2 1446 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
18173adant2 1128 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
19 simp2 1134 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
205, 10nvcom 28404 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐵) ∈ 𝑋𝐴𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
211, 18, 19, 20syl3anc 1368 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
2212, 15, 213eqtrd 2837 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = (𝐴𝐺(-1𝑆𝐵)))
2322fveq2d 6649 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
245, 10nvgcl 28403 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
251, 4, 9, 24syl3anc 1368 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
26 nvdif.6 . . . 4 𝑁 = (normCV𝑈)
275, 6, 26nvm1 28448 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
281, 25, 27syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
2923, 28eqtr3d 2835 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527  -cneg 10860  NrmCVeccnv 28367   +𝑣 cpv 28368  BaseSetcba 28369   ·𝑠OLD cns 28370  normCVcnmcv 28373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ginv 28278  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383
This theorem is referenced by:  nvabs  28455  imsmetlem  28473  dipcj  28497
  Copyright terms: Public domain W3C validator