Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdif Structured version   Visualization version   GIF version

Theorem nvdif 28360
 Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvdif ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))

Proof of Theorem nvdif
StepHypRef Expression
1 simp1 1130 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 neg1cn 11740 . . . . . 6 -1 ∈ ℂ
32a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ ℂ)
4 simp3 1132 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 nvdif.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
6 nvdif.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 28320 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
82, 7mp3an2 1442 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
983adant3 1126 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐴) ∈ 𝑋)
10 nvdif.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
115, 10, 6nvdi 28324 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋)) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
121, 3, 4, 9, 11syl13anc 1366 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
135, 6nvnegneg 28343 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
14133adant3 1126 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
1514oveq2d 7164 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺𝐴))
165, 6nvscl 28320 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
172, 16mp3an2 1442 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
18173adant2 1125 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
19 simp2 1131 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
205, 10nvcom 28315 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐵) ∈ 𝑋𝐴𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
211, 18, 19, 20syl3anc 1365 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
2212, 15, 213eqtrd 2865 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = (𝐴𝐺(-1𝑆𝐵)))
2322fveq2d 6671 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
245, 10nvgcl 28314 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
251, 4, 9, 24syl3anc 1365 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
26 nvdif.6 . . . 4 𝑁 = (normCV𝑈)
275, 6, 26nvm1 28359 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
281, 25, 27syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
2923, 28eqtr3d 2863 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  1c1 10527  -cneg 10860  NrmCVeccnv 28278   +𝑣 cpv 28279  BaseSetcba 28280   ·𝑠OLD cns 28281  normCVcnmcv 28284 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-grpo 28187  df-gid 28188  df-ginv 28189  df-ablo 28239  df-vc 28253  df-nv 28286  df-va 28289  df-ba 28290  df-sm 28291  df-0v 28292  df-nmcv 28294 This theorem is referenced by:  nvabs  28366  imsmetlem  28384  dipcj  28408
 Copyright terms: Public domain W3C validator