|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nvdif | Structured version Visualization version GIF version | ||
| Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nvdif.1 | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| nvdif.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) | 
| nvdif.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | 
| nvdif.6 | ⊢ 𝑁 = (normCV‘𝑈) | 
| Ref | Expression | 
|---|---|
| nvdif | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1137 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑈 ∈ NrmCVec) | |
| 2 | neg1cn 12380 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → -1 ∈ ℂ) | 
| 4 | simp3 1139 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 5 | nvdif.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | nvdif.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 7 | 5, 6 | nvscl 30645 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) | 
| 8 | 2, 7 | mp3an2 1451 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) | 
| 9 | 8 | 3adant3 1133 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) | 
| 10 | nvdif.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 11 | 5, 10, 6 | nvdi 30649 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋)) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴)))) | 
| 12 | 1, 3, 4, 9, 11 | syl13anc 1374 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴)))) | 
| 13 | 5, 6 | nvnegneg 30668 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) | 
| 14 | 13 | 3adant3 1133 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) | 
| 15 | 14 | oveq2d 7447 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺𝐴)) | 
| 16 | 5, 6 | nvscl 30645 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (-1𝑆𝐵) ∈ 𝑋) | 
| 17 | 2, 16 | mp3an2 1451 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (-1𝑆𝐵) ∈ 𝑋) | 
| 18 | 17 | 3adant2 1132 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆𝐵) ∈ 𝑋) | 
| 19 | simp2 1138 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 20 | 5, 10 | nvcom 30640 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐵) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵))) | 
| 21 | 1, 18, 19, 20 | syl3anc 1373 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵))) | 
| 22 | 12, 15, 21 | 3eqtrd 2781 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = (𝐴𝐺(-1𝑆𝐵))) | 
| 23 | 22 | fveq2d 6910 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) | 
| 24 | 5, 10 | nvgcl 30639 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) | 
| 25 | 1, 4, 9, 24 | syl3anc 1373 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) | 
| 26 | nvdif.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 27 | 5, 6, 26 | nvm1 30684 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | 
| 28 | 1, 25, 27 | syl2anc 584 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | 
| 29 | 23, 28 | eqtr3d 2779 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 -cneg 11493 NrmCVeccnv 30603 +𝑣 cpv 30604 BaseSetcba 30605 ·𝑠OLD cns 30606 normCVcnmcv 30609 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-grpo 30512 df-gid 30513 df-ginv 30514 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-nmcv 30619 | 
| This theorem is referenced by: nvabs 30691 imsmetlem 30709 dipcj 30733 | 
| Copyright terms: Public domain | W3C validator |