MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdif Structured version   Visualization version   GIF version

Theorem nvdif 28601
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvdif ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))

Proof of Theorem nvdif
StepHypRef Expression
1 simp1 1137 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 neg1cn 11830 . . . . . 6 -1 ∈ ℂ
32a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ ℂ)
4 simp3 1139 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 nvdif.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
6 nvdif.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 28561 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
82, 7mp3an2 1450 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
983adant3 1133 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐴) ∈ 𝑋)
10 nvdif.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
115, 10, 6nvdi 28565 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋)) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
121, 3, 4, 9, 11syl13anc 1373 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
135, 6nvnegneg 28584 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
14133adant3 1133 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
1514oveq2d 7186 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺𝐴))
165, 6nvscl 28561 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
172, 16mp3an2 1450 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
18173adant2 1132 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
19 simp2 1138 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
205, 10nvcom 28556 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐵) ∈ 𝑋𝐴𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
211, 18, 19, 20syl3anc 1372 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
2212, 15, 213eqtrd 2777 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = (𝐴𝐺(-1𝑆𝐵)))
2322fveq2d 6678 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
245, 10nvgcl 28555 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
251, 4, 9, 24syl3anc 1372 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
26 nvdif.6 . . . 4 𝑁 = (normCV𝑈)
275, 6, 26nvm1 28600 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
281, 25, 27syl2anc 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
2923, 28eqtr3d 2775 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  cfv 6339  (class class class)co 7170  cc 10613  1c1 10616  -cneg 10949  NrmCVeccnv 28519   +𝑣 cpv 28520  BaseSetcba 28521   ·𝑠OLD cns 28522  normCVcnmcv 28525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-grpo 28428  df-gid 28429  df-ginv 28430  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-nmcv 28535
This theorem is referenced by:  nvabs  28607  imsmetlem  28625  dipcj  28649
  Copyright terms: Public domain W3C validator