| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvmf | Structured version Visualization version GIF version | ||
| Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvmf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvmf.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| nvmf | ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
| 2 | simprl 771 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | |
| 3 | neg1cn 12380 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 4 | nvmf.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 5 | eqid 2737 | . . . . . . . 8 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 6 | 4, 5 | nvscl 30645 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝑦) ∈ 𝑋) |
| 7 | 3, 6 | mp3an2 1451 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (-1( ·𝑠OLD ‘𝑈)𝑦) ∈ 𝑋) |
| 8 | 7 | adantrl 716 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (-1( ·𝑠OLD ‘𝑈)𝑦) ∈ 𝑋) |
| 9 | eqid 2737 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 10 | 4, 9 | nvgcl 30639 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ (-1( ·𝑠OLD ‘𝑈)𝑦) ∈ 𝑋) → (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦)) ∈ 𝑋) |
| 11 | 1, 2, 8, 10 | syl3anc 1373 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦)) ∈ 𝑋) |
| 12 | 11 | ralrimivva 3202 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦)) ∈ 𝑋) |
| 13 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦))) | |
| 14 | 13 | fmpo 8093 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦)) ∈ 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋) |
| 15 | 12, 14 | sylib 218 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋) |
| 16 | nvmf.3 | . . . 4 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 17 | 4, 9, 5, 16 | nvmfval 30663 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦)))) |
| 18 | 17 | feq1d 6720 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑀:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑦))):(𝑋 × 𝑋)⟶𝑋)) |
| 19 | 15, 18 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 × cxp 5683 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11153 1c1 11156 -cneg 11493 NrmCVeccnv 30603 +𝑣 cpv 30604 BaseSetcba 30605 ·𝑠OLD cns 30606 −𝑣 cnsb 30608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 |
| This theorem is referenced by: nvmcl 30665 imsdval 30705 imsdf 30708 sspm 30753 hhssvsf 31292 |
| Copyright terms: Public domain | W3C validator |