![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmf | Structured version Visualization version GIF version |
Description: Mapping for the vector subtraction operation. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmf.1 | β’ π = (BaseSetβπ) |
nvmf.3 | β’ π = ( βπ£ βπ) |
Ref | Expression |
---|---|
nvmf | β’ (π β NrmCVec β π:(π Γ π)βΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 β’ ((π β NrmCVec β§ (π₯ β π β§ π¦ β π)) β π β NrmCVec) | |
2 | simprl 767 | . . . . 5 β’ ((π β NrmCVec β§ (π₯ β π β§ π¦ β π)) β π₯ β π) | |
3 | neg1cn 12332 | . . . . . . 7 β’ -1 β β | |
4 | nvmf.1 | . . . . . . . 8 β’ π = (BaseSetβπ) | |
5 | eqid 2730 | . . . . . . . 8 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
6 | 4, 5 | nvscl 30144 | . . . . . . 7 β’ ((π β NrmCVec β§ -1 β β β§ π¦ β π) β (-1( Β·π OLD βπ)π¦) β π) |
7 | 3, 6 | mp3an2 1447 | . . . . . 6 β’ ((π β NrmCVec β§ π¦ β π) β (-1( Β·π OLD βπ)π¦) β π) |
8 | 7 | adantrl 712 | . . . . 5 β’ ((π β NrmCVec β§ (π₯ β π β§ π¦ β π)) β (-1( Β·π OLD βπ)π¦) β π) |
9 | eqid 2730 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
10 | 4, 9 | nvgcl 30138 | . . . . 5 β’ ((π β NrmCVec β§ π₯ β π β§ (-1( Β·π OLD βπ)π¦) β π) β (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦)) β π) |
11 | 1, 2, 8, 10 | syl3anc 1369 | . . . 4 β’ ((π β NrmCVec β§ (π₯ β π β§ π¦ β π)) β (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦)) β π) |
12 | 11 | ralrimivva 3198 | . . 3 β’ (π β NrmCVec β βπ₯ β π βπ¦ β π (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦)) β π) |
13 | eqid 2730 | . . . 4 β’ (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦))) = (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦))) | |
14 | 13 | fmpo 8058 | . . 3 β’ (βπ₯ β π βπ¦ β π (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦)) β π β (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦))):(π Γ π)βΆπ) |
15 | 12, 14 | sylib 217 | . 2 β’ (π β NrmCVec β (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦))):(π Γ π)βΆπ) |
16 | nvmf.3 | . . . 4 β’ π = ( βπ£ βπ) | |
17 | 4, 9, 5, 16 | nvmfval 30162 | . . 3 β’ (π β NrmCVec β π = (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦)))) |
18 | 17 | feq1d 6703 | . 2 β’ (π β NrmCVec β (π:(π Γ π)βΆπ β (π₯ β π, π¦ β π β¦ (π₯( +π£ βπ)(-1( Β·π OLD βπ)π¦))):(π Γ π)βΆπ)) |
19 | 15, 18 | mpbird 256 | 1 β’ (π β NrmCVec β π:(π Γ π)βΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 Γ cxp 5675 βΆwf 6540 βcfv 6544 (class class class)co 7413 β cmpo 7415 βcc 11112 1c1 11115 -cneg 11451 NrmCVeccnv 30102 +π£ cpv 30103 BaseSetcba 30104 Β·π OLD cns 30105 βπ£ cnsb 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-ltxr 11259 df-sub 11452 df-neg 11453 df-grpo 30011 df-gid 30012 df-ginv 30013 df-gdiv 30014 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-vs 30117 df-nmcv 30118 |
This theorem is referenced by: nvmcl 30164 imsdval 30204 imsdf 30207 sspm 30252 hhssvsf 30791 |
Copyright terms: Public domain | W3C validator |