| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssre | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnssre | ⊢ ℕ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | peano2re 11408 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 3 | 2 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
| 4 | peano5nni 12243 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 |
| This theorem is referenced by: nnre 12247 dfnn3 12254 nnred 12255 nnunb 12497 nn0ssre 12505 isercolllem1 15681 isercolllem2 15682 isercoll 15684 o1fsum 15829 ruc 16261 prmgaplem3 17073 prmgaplem4 17074 gsumval3 19888 ovolctb2 25445 ovolicc2lem3 25472 ovolicc2lem4 25473 iundisj2 25502 iundisj2f 32571 ssnnssfz 32764 iundisjfi 32773 iundisj2fi 32774 xrsmulgzz 33001 ballotlemsup 34537 reprlt 34651 reprgt 34653 erdszelem5 35217 erdszelem7 35219 erdszelem8 35220 incsequz2 37773 aks6d1c2 42143 sticksstones1 42159 stoweidlem34 46063 fourierdlem31 46167 prmdvdsfmtnof1lem1 47598 prmdvdsfmtnof 47600 |
| Copyright terms: Public domain | W3C validator |