Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssre | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnssre | ⊢ ℕ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10833 | . 2 ⊢ 1 ∈ ℝ | |
2 | peano2re 11005 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
3 | 2 | rgen 3071 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
4 | peano5nni 11833 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 (class class class)co 7213 ℝcr 10728 1c1 10730 + caddc 10732 ℕcn 11830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-i2m1 10797 ax-1ne0 10798 ax-rrecex 10801 ax-cnre 10802 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 |
This theorem is referenced by: nnre 11837 dfnn3 11844 nnred 11845 nnunb 12086 nn0ssre 12094 isercolllem1 15228 isercolllem2 15229 isercoll 15231 o1fsum 15377 ruc 15804 prmgaplem3 16606 prmgaplem4 16607 gsumval3 19292 ovolctb2 24389 ovolicc2lem3 24416 ovolicc2lem4 24417 iundisj2 24446 iundisj2f 30648 ssnnssfz 30828 iundisjfi 30837 iundisj2fi 30838 xrsmulgzz 31006 ballotlemsup 32183 reprlt 32311 reprgt 32313 erdszelem5 32870 erdszelem7 32872 erdszelem8 32873 incsequz2 35644 sticksstones1 39824 stoweidlem34 43250 fourierdlem31 43354 prmdvdsfmtnof1lem1 44709 prmdvdsfmtnof 44711 |
Copyright terms: Public domain | W3C validator |