Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssre | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnssre | ⊢ ℕ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
2 | peano2re 11078 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
3 | 2 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
4 | peano5nni 11906 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 688 | 1 ⊢ ℕ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: nnre 11910 dfnn3 11917 nnred 11918 nnunb 12159 nn0ssre 12167 isercolllem1 15304 isercolllem2 15305 isercoll 15307 o1fsum 15453 ruc 15880 prmgaplem3 16682 prmgaplem4 16683 gsumval3 19423 ovolctb2 24561 ovolicc2lem3 24588 ovolicc2lem4 24589 iundisj2 24618 iundisj2f 30830 ssnnssfz 31010 iundisjfi 31019 iundisj2fi 31020 xrsmulgzz 31189 ballotlemsup 32371 reprlt 32499 reprgt 32501 erdszelem5 33057 erdszelem7 33059 erdszelem8 33060 incsequz2 35834 sticksstones1 40030 stoweidlem34 43465 fourierdlem31 43569 prmdvdsfmtnof1lem1 44924 prmdvdsfmtnof 44926 |
Copyright terms: Public domain | W3C validator |