MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssre Structured version   Visualization version   GIF version

Theorem nnssre 12270
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 11261 . 2 1 ∈ ℝ
2 peano2re 11434 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 3063 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 12269 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 692 1 ℕ ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3061  wss 3951  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  cn 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267
This theorem is referenced by:  nnre  12273  dfnn3  12280  nnred  12281  nnunb  12522  nn0ssre  12530  isercolllem1  15701  isercolllem2  15702  isercoll  15704  o1fsum  15849  ruc  16279  prmgaplem3  17091  prmgaplem4  17092  gsumval3  19925  ovolctb2  25527  ovolicc2lem3  25554  ovolicc2lem4  25555  iundisj2  25584  iundisj2f  32603  ssnnssfz  32789  iundisjfi  32798  iundisj2fi  32799  xrsmulgzz  33011  ballotlemsup  34507  reprlt  34634  reprgt  34636  erdszelem5  35200  erdszelem7  35202  erdszelem8  35203  incsequz2  37756  aks6d1c2  42131  sticksstones1  42147  stoweidlem34  46049  fourierdlem31  46153  prmdvdsfmtnof1lem1  47571  prmdvdsfmtnof  47573
  Copyright terms: Public domain W3C validator