| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssre | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnssre | ⊢ ℕ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | peano2re 11286 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
| 3 | 2 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
| 4 | peano5nni 12128 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 |
| This theorem is referenced by: nnre 12132 dfnn3 12139 nnred 12140 nnunb 12377 nn0ssre 12385 isercolllem1 15572 isercolllem2 15573 isercoll 15575 o1fsum 15720 ruc 16152 prmgaplem3 16965 prmgaplem4 16966 gsumval3 19819 ovolctb2 25420 ovolicc2lem3 25447 ovolicc2lem4 25448 iundisj2 25477 iundisj2f 32570 ssnnssfz 32770 iundisjfi 32778 iundisj2fi 32779 xrsmulgzz 32990 ballotlemsup 34518 reprlt 34632 reprgt 34634 erdszelem5 35239 erdszelem7 35241 erdszelem8 35242 incsequz2 37797 aks6d1c2 42171 sticksstones1 42187 stoweidlem34 46080 fourierdlem31 46184 prmdvdsfmtnof1lem1 47623 prmdvdsfmtnof 47625 |
| Copyright terms: Public domain | W3C validator |