MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssre Structured version   Visualization version   GIF version

Theorem nnssre 12197
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
nnssre ℕ ⊆ ℝ

Proof of Theorem nnssre
StepHypRef Expression
1 1re 11181 . 2 1 ∈ ℝ
2 peano2re 11354 . . 3 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
32rgen 3047 . 2 𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ
4 peano5nni 12196 . 2 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ)
51, 3, 4mp2an 692 1 ℕ ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3045  wss 3917  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rrecex 11147  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194
This theorem is referenced by:  nnre  12200  dfnn3  12207  nnred  12208  nnunb  12445  nn0ssre  12453  isercolllem1  15638  isercolllem2  15639  isercoll  15641  o1fsum  15786  ruc  16218  prmgaplem3  17031  prmgaplem4  17032  gsumval3  19844  ovolctb2  25400  ovolicc2lem3  25427  ovolicc2lem4  25428  iundisj2  25457  iundisj2f  32526  ssnnssfz  32717  iundisjfi  32726  iundisj2fi  32727  xrsmulgzz  32954  ballotlemsup  34503  reprlt  34617  reprgt  34619  erdszelem5  35189  erdszelem7  35191  erdszelem8  35192  incsequz2  37750  aks6d1c2  42125  sticksstones1  42141  stoweidlem34  46039  fourierdlem31  46143  prmdvdsfmtnof1lem1  47589  prmdvdsfmtnof  47591
  Copyright terms: Public domain W3C validator