![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version |
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 13389 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1135 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
3 | 1, 2 | syl6bi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
4 | 3 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝcr 11129 ℝ*cxr 11269 < clt 11270 (,)cioo 13348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-pre-lttri 11204 ax-pre-lttrn 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-ioo 13352 |
This theorem is referenced by: iocopn 44828 iooshift 44830 iooiinicc 44850 ioogtlbd 44858 iooiinioc 44864 lptre2pt 44951 limcresiooub 44953 limcresioolb 44954 sinaover2ne0 45179 dvbdfbdioolem1 45239 ioodvbdlimc1lem2 45243 fourierdlem27 45445 fourierdlem28 45446 fourierdlem31 45449 fourierdlem33 45451 fourierdlem40 45458 fourierdlem41 45459 fourierdlem46 45463 fourierdlem47 45464 fourierdlem48 45465 fourierdlem49 45466 fourierdlem57 45474 fourierdlem59 45476 fourierdlem62 45479 fourierdlem64 45481 fourierdlem65 45482 fourierdlem68 45485 fourierdlem73 45490 fourierdlem76 45493 fourierdlem78 45495 fourierdlem84 45501 fourierdlem90 45507 fourierdlem92 45509 fourierdlem97 45514 fourierdlem103 45520 fourierdlem104 45521 fourierdlem111 45528 sqwvfoura 45539 sqwvfourb 45540 fourierswlem 45541 fouriersw 45542 etransclem23 45568 qndenserrnbllem 45605 ioorrnopnlem 45615 ioorrnopnxrlem 45617 hoiqssbllem1 45933 hoiqssbllem2 45934 iunhoiioolem 45986 pimiooltgt 46021 smfaddlem1 46074 smfmullem1 46102 smfmullem2 46103 |
Copyright terms: Public domain | W3C validator |