Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version |
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 13119 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1136 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
4 | 3 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7271 ℝcr 10871 ℝ*cxr 11009 < clt 11010 (,)cioo 13078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-pre-lttri 10946 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-ioo 13082 |
This theorem is referenced by: iocopn 43029 iooshift 43031 iooiinicc 43051 ioogtlbd 43059 iooiinioc 43065 lptre2pt 43152 limcresiooub 43154 limcresioolb 43155 sinaover2ne0 43380 dvbdfbdioolem1 43440 ioodvbdlimc1lem2 43444 fourierdlem27 43646 fourierdlem28 43647 fourierdlem31 43650 fourierdlem33 43652 fourierdlem40 43659 fourierdlem41 43660 fourierdlem46 43664 fourierdlem47 43665 fourierdlem48 43666 fourierdlem49 43667 fourierdlem57 43675 fourierdlem59 43677 fourierdlem62 43680 fourierdlem64 43682 fourierdlem65 43683 fourierdlem68 43686 fourierdlem73 43691 fourierdlem76 43694 fourierdlem78 43696 fourierdlem84 43702 fourierdlem90 43708 fourierdlem92 43710 fourierdlem97 43715 fourierdlem103 43721 fourierdlem104 43722 fourierdlem111 43729 sqwvfoura 43740 sqwvfourb 43741 fourierswlem 43742 fouriersw 43743 etransclem23 43769 qndenserrnbllem 43806 ioorrnopnlem 43816 ioorrnopnxrlem 43818 hoiqssbllem1 44131 hoiqssbllem2 44132 iunhoiioolem 44184 pimiooltgt 44216 smfaddlem1 44266 smfmullem1 44293 smfmullem2 44294 |
Copyright terms: Public domain | W3C validator |