Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version |
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 13102 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1135 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
4 | 3 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 ℝ*cxr 10992 < clt 10993 (,)cioo 13061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ioo 13065 |
This theorem is referenced by: iocopn 43012 iooshift 43014 iooiinicc 43034 ioogtlbd 43042 iooiinioc 43048 lptre2pt 43135 limcresiooub 43137 limcresioolb 43138 sinaover2ne0 43363 dvbdfbdioolem1 43423 ioodvbdlimc1lem2 43427 fourierdlem27 43629 fourierdlem28 43630 fourierdlem31 43633 fourierdlem33 43635 fourierdlem40 43642 fourierdlem41 43643 fourierdlem46 43647 fourierdlem47 43648 fourierdlem48 43649 fourierdlem49 43650 fourierdlem57 43658 fourierdlem59 43660 fourierdlem62 43663 fourierdlem64 43665 fourierdlem65 43666 fourierdlem68 43669 fourierdlem73 43674 fourierdlem76 43677 fourierdlem78 43679 fourierdlem84 43685 fourierdlem90 43691 fourierdlem92 43693 fourierdlem97 43698 fourierdlem103 43704 fourierdlem104 43705 fourierdlem111 43712 sqwvfoura 43723 sqwvfourb 43724 fourierswlem 43725 fouriersw 43726 etransclem23 43752 qndenserrnbllem 43789 ioorrnopnlem 43799 ioorrnopnxrlem 43801 hoiqssbllem1 44114 hoiqssbllem2 44115 iunhoiioolem 44167 pimiooltgt 44199 smfaddlem1 44249 smfmullem1 44276 smfmullem2 44277 |
Copyright terms: Public domain | W3C validator |