Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioogtlb Structured version   Visualization version   GIF version

Theorem ioogtlb 45486
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ioogtlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)

Proof of Theorem ioogtlb
StepHypRef Expression
1 elioo2 13353 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
2 simp2 1137 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵) → 𝐴 < 𝐶)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5109  (class class class)co 7389  cr 11073  *cxr 11213   < clt 11214  (,)cioo 13312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-pre-lttri 11148  ax-pre-lttrn 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-ioo 13316
This theorem is referenced by:  iocopn  45511  iooshift  45513  iooiinicc  45533  ioogtlbd  45541  iooiinioc  45547  lptre2pt  45631  limcresiooub  45633  limcresioolb  45634  sinaover2ne0  45859  dvbdfbdioolem1  45919  ioodvbdlimc1lem2  45923  fourierdlem27  46125  fourierdlem28  46126  fourierdlem31  46129  fourierdlem33  46131  fourierdlem40  46138  fourierdlem41  46139  fourierdlem46  46143  fourierdlem47  46144  fourierdlem48  46145  fourierdlem49  46146  fourierdlem57  46154  fourierdlem59  46156  fourierdlem62  46159  fourierdlem64  46161  fourierdlem65  46162  fourierdlem68  46165  fourierdlem73  46170  fourierdlem76  46173  fourierdlem78  46175  fourierdlem84  46181  fourierdlem90  46187  fourierdlem92  46189  fourierdlem97  46194  fourierdlem103  46200  fourierdlem104  46201  fourierdlem111  46208  sqwvfoura  46219  sqwvfourb  46220  fourierswlem  46221  fouriersw  46222  etransclem23  46248  qndenserrnbllem  46285  ioorrnopnlem  46295  ioorrnopnxrlem  46297  hoiqssbllem1  46613  hoiqssbllem2  46614  iunhoiioolem  46666  pimiooltgt  46701  smfaddlem1  46754  smfmullem1  46782  smfmullem2  46783
  Copyright terms: Public domain W3C validator