|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elioo2 13429 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) | 
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 ℝ*cxr 11295 < clt 11296 (,)cioo 13388 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ioo 13392 | 
| This theorem is referenced by: iocopn 45538 iooshift 45540 iooiinicc 45560 ioogtlbd 45568 iooiinioc 45574 lptre2pt 45660 limcresiooub 45662 limcresioolb 45663 sinaover2ne0 45888 dvbdfbdioolem1 45948 ioodvbdlimc1lem2 45952 fourierdlem27 46154 fourierdlem28 46155 fourierdlem31 46158 fourierdlem33 46160 fourierdlem40 46167 fourierdlem41 46168 fourierdlem46 46172 fourierdlem47 46173 fourierdlem48 46174 fourierdlem49 46175 fourierdlem57 46183 fourierdlem59 46185 fourierdlem62 46188 fourierdlem64 46190 fourierdlem65 46191 fourierdlem68 46194 fourierdlem73 46199 fourierdlem76 46202 fourierdlem78 46204 fourierdlem84 46210 fourierdlem90 46216 fourierdlem92 46218 fourierdlem97 46223 fourierdlem103 46229 fourierdlem104 46230 fourierdlem111 46237 sqwvfoura 46248 sqwvfourb 46249 fourierswlem 46250 fouriersw 46251 etransclem23 46277 qndenserrnbllem 46314 ioorrnopnlem 46324 ioorrnopnxrlem 46326 hoiqssbllem1 46642 hoiqssbllem2 46643 iunhoiioolem 46695 pimiooltgt 46730 smfaddlem1 46783 smfmullem1 46811 smfmullem2 46812 | 
| Copyright terms: Public domain | W3C validator |