| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version | ||
| Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo2 13307 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
| 3 | 1, 2 | biimtrdi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
| 4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 ℝ*cxr 11167 < clt 11168 (,)cioo 13266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 |
| This theorem is referenced by: iocopn 45502 iooshift 45504 iooiinicc 45524 ioogtlbd 45532 iooiinioc 45538 lptre2pt 45622 limcresiooub 45624 limcresioolb 45625 sinaover2ne0 45850 dvbdfbdioolem1 45910 ioodvbdlimc1lem2 45914 fourierdlem27 46116 fourierdlem28 46117 fourierdlem31 46120 fourierdlem33 46122 fourierdlem40 46129 fourierdlem41 46130 fourierdlem46 46134 fourierdlem47 46135 fourierdlem48 46136 fourierdlem49 46137 fourierdlem57 46145 fourierdlem59 46147 fourierdlem62 46150 fourierdlem64 46152 fourierdlem65 46153 fourierdlem68 46156 fourierdlem73 46161 fourierdlem76 46164 fourierdlem78 46166 fourierdlem84 46172 fourierdlem90 46178 fourierdlem92 46180 fourierdlem97 46185 fourierdlem103 46191 fourierdlem104 46192 fourierdlem111 46199 sqwvfoura 46210 sqwvfourb 46211 fourierswlem 46212 fouriersw 46213 etransclem23 46239 qndenserrnbllem 46276 ioorrnopnlem 46286 ioorrnopnxrlem 46288 hoiqssbllem1 46604 hoiqssbllem2 46605 iunhoiioolem 46657 pimiooltgt 46692 smfaddlem1 46745 smfmullem1 46773 smfmullem2 46774 |
| Copyright terms: Public domain | W3C validator |