Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioogtlb | Structured version Visualization version GIF version |
Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioogtlb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo2 13170 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1137 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 < 𝐶) | |
3 | 1, 2 | syl6bi 253 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐶)) |
4 | 3 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 class class class wbr 5081 (class class class)co 7307 ℝcr 10920 ℝ*cxr 11058 < clt 11059 (,)cioo 13129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-ioo 13133 |
This theorem is referenced by: iocopn 43287 iooshift 43289 iooiinicc 43309 ioogtlbd 43317 iooiinioc 43323 lptre2pt 43410 limcresiooub 43412 limcresioolb 43413 sinaover2ne0 43638 dvbdfbdioolem1 43698 ioodvbdlimc1lem2 43702 fourierdlem27 43904 fourierdlem28 43905 fourierdlem31 43908 fourierdlem33 43910 fourierdlem40 43917 fourierdlem41 43918 fourierdlem46 43922 fourierdlem47 43923 fourierdlem48 43924 fourierdlem49 43925 fourierdlem57 43933 fourierdlem59 43935 fourierdlem62 43938 fourierdlem64 43940 fourierdlem65 43941 fourierdlem68 43944 fourierdlem73 43949 fourierdlem76 43952 fourierdlem78 43954 fourierdlem84 43960 fourierdlem90 43966 fourierdlem92 43968 fourierdlem97 43973 fourierdlem103 43979 fourierdlem104 43980 fourierdlem111 43987 sqwvfoura 43998 sqwvfourb 43999 fourierswlem 44000 fouriersw 44001 etransclem23 44027 qndenserrnbllem 44064 ioorrnopnlem 44074 ioorrnopnxrlem 44076 hoiqssbllem1 44390 hoiqssbllem2 44391 iunhoiioolem 44443 pimiooltgt 44478 smfaddlem1 44531 smfmullem1 44559 smfmullem2 44560 |
Copyright terms: Public domain | W3C validator |