| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1wf | Structured version Visualization version GIF version | ||
| Description: Each stage in the cumulative hierarchy is well-founded. (Contributed by BTernaryTau, 19-Jan-2026.) |
| Ref | Expression |
|---|---|
| r1wf | ⊢ (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (𝑅1‘𝐴) ∈ V | |
| 2 | 1 | pwid 4572 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
| 3 | r1suc 9660 | . . . 4 ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
| 4 | 2, 3 | eleqtrrid 2838 | . . 3 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
| 5 | r1elwf 9686 | . . 3 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 7 | onwf 9720 | . . 3 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 8 | r1fnon 9657 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
| 9 | 8 | fndmi 6585 | . . . . . 6 ⊢ dom 𝑅1 = On |
| 10 | 9 | eleq2i 2823 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
| 11 | ndmfv 6854 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) = ∅) |
| 13 | 0elon 6361 | . . . 4 ⊢ ∅ ∈ On | |
| 14 | 12, 13 | eqeltrdi 2839 | . . 3 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) ∈ On) |
| 15 | 7, 14 | sselid 3932 | . 2 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 16 | 6, 15 | pm2.61i 182 | 1 ⊢ (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∅c0 4283 𝒫 cpw 4550 ∪ cuni 4859 dom cdm 5616 “ cima 5619 Oncon0 6306 suc csuc 6308 ‘cfv 6481 𝑅1cr1 9652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9654 df-rank 9655 |
| This theorem is referenced by: rankval4b 35104 |
| Copyright terms: Public domain | W3C validator |