| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1wf | Structured version Visualization version GIF version | ||
| Description: Each stage in the cumulative hierarchy is well-founded. (Contributed by BTernaryTau, 19-Jan-2026.) |
| Ref | Expression |
|---|---|
| r1wf | ⊢ (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . . . 5 ⊢ (𝑅1‘𝐴) ∈ V | |
| 2 | 1 | pwid 4571 | . . . 4 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
| 3 | r1suc 9670 | . . . 4 ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
| 4 | 2, 3 | eleqtrrid 2840 | . . 3 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
| 5 | r1elwf 9696 | . . 3 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 7 | onwf 9730 | . . 3 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 8 | r1fnon 9667 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
| 9 | 8 | fndmi 6590 | . . . . . 6 ⊢ dom 𝑅1 = On |
| 10 | 9 | eleq2i 2825 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
| 11 | ndmfv 6860 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) = ∅) |
| 13 | 0elon 6366 | . . . 4 ⊢ ∅ ∈ On | |
| 14 | 12, 13 | eqeltrdi 2841 | . . 3 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) ∈ On) |
| 15 | 7, 14 | sselid 3928 | . 2 ⊢ (¬ 𝐴 ∈ On → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 16 | 6, 15 | pm2.61i 182 | 1 ⊢ (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ∅c0 4282 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Oncon0 6311 suc csuc 6313 ‘cfv 6486 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9664 df-rank 9665 |
| This theorem is referenced by: rankval4b 35132 |
| Copyright terms: Public domain | W3C validator |