| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexmul2 | Structured version Visualization version GIF version | ||
| Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13191. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| rexmul2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexmul2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rexmul2.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| rexmul2.1 | ⊢ (𝜑 → 0 < 𝐶) |
| rexmul2.2 | ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) |
| Ref | Expression |
|---|---|
| rexmul2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexmul2.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
| 4 | 3 | oveq1d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶)) |
| 5 | rexmul2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | rexmul2.1 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | xmulpnf2 13195 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (+∞ ·e 𝐶) = +∞) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = +∞) |
| 10 | 2, 4, 9 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = +∞) |
| 11 | rexmul2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | renepnfd 11185 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 ≠ +∞) |
| 14 | 13 | neneqd 2930 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞) |
| 15 | 10, 14 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = +∞) |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐵 = -∞) | |
| 18 | 17 | oveq1d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶)) |
| 19 | xmulmnf2 13197 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞) | |
| 20 | 5, 6, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (-∞ ·e 𝐶) = -∞) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (-∞ ·e 𝐶) = -∞) |
| 22 | 16, 18, 21 | 3eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = -∞) |
| 23 | 11 | renemnfd 11186 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 ≠ -∞) |
| 25 | 24 | neneqd 2930 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → ¬ 𝐴 = -∞) |
| 26 | 22, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = -∞) |
| 27 | rexmul2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 28 | elxr 13036 | . . 3 ⊢ (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
| 30 | 15, 26, 29 | ecase23d 1475 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ·e cxmu 13031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-xneg 13032 df-xmul 13034 |
| This theorem is referenced by: constrext2chnlem 33716 |
| Copyright terms: Public domain | W3C validator |