Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexmul2 Structured version   Visualization version   GIF version

Theorem rexmul2 32685
Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13294. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
rexmul2.a (𝜑𝐴 ∈ ℝ)
rexmul2.b (𝜑𝐵 ∈ ℝ*)
rexmul2.c (𝜑𝐶 ∈ ℝ*)
rexmul2.1 (𝜑 → 0 < 𝐶)
rexmul2.2 (𝜑𝐴 = (𝐵 ·e 𝐶))
Assertion
Ref Expression
rexmul2 (𝜑𝐵 ∈ ℝ)

Proof of Theorem rexmul2
StepHypRef Expression
1 rexmul2.2 . . . . 5 (𝜑𝐴 = (𝐵 ·e 𝐶))
21adantr 480 . . . 4 ((𝜑𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶))
3 simpr 484 . . . . 5 ((𝜑𝐵 = +∞) → 𝐵 = +∞)
43oveq1d 7427 . . . 4 ((𝜑𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
5 rexmul2.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
6 rexmul2.1 . . . . . 6 (𝜑 → 0 < 𝐶)
7 xmulpnf2 13298 . . . . . 6 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
85, 6, 7syl2anc 584 . . . . 5 (𝜑 → (+∞ ·e 𝐶) = +∞)
98adantr 480 . . . 4 ((𝜑𝐵 = +∞) → (+∞ ·e 𝐶) = +∞)
102, 4, 93eqtrd 2773 . . 3 ((𝜑𝐵 = +∞) → 𝐴 = +∞)
11 rexmul2.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1211renepnfd 11293 . . . . 5 (𝜑𝐴 ≠ +∞)
1312adantr 480 . . . 4 ((𝜑𝐵 = +∞) → 𝐴 ≠ +∞)
1413neneqd 2936 . . 3 ((𝜑𝐵 = +∞) → ¬ 𝐴 = +∞)
1510, 14pm2.65da 816 . 2 (𝜑 → ¬ 𝐵 = +∞)
161adantr 480 . . . 4 ((𝜑𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶))
17 simpr 484 . . . . 5 ((𝜑𝐵 = -∞) → 𝐵 = -∞)
1817oveq1d 7427 . . . 4 ((𝜑𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶))
19 xmulmnf2 13300 . . . . . 6 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞)
205, 6, 19syl2anc 584 . . . . 5 (𝜑 → (-∞ ·e 𝐶) = -∞)
2120adantr 480 . . . 4 ((𝜑𝐵 = -∞) → (-∞ ·e 𝐶) = -∞)
2216, 18, 213eqtrd 2773 . . 3 ((𝜑𝐵 = -∞) → 𝐴 = -∞)
2311renemnfd 11294 . . . . 5 (𝜑𝐴 ≠ -∞)
2423adantr 480 . . . 4 ((𝜑𝐵 = -∞) → 𝐴 ≠ -∞)
2524neneqd 2936 . . 3 ((𝜑𝐵 = -∞) → ¬ 𝐴 = -∞)
2622, 25pm2.65da 816 . 2 (𝜑 → ¬ 𝐵 = -∞)
27 rexmul2.b . . 3 (𝜑𝐵 ∈ ℝ*)
28 elxr 13139 . . 3 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2927, 28sylib 218 . 2 (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3015, 26, 29ecase23d 1474 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  (class class class)co 7412  cr 11135  0cc0 11136  +∞cpnf 11273  -∞cmnf 11274  *cxr 11275   < clt 11276   ·e cxmu 13134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-xneg 13135  df-xmul 13137
This theorem is referenced by:  constrext2chnlem  33721
  Copyright terms: Public domain W3C validator