Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexmul2 Structured version   Visualization version   GIF version

Theorem rexmul2 32710
Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13191. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
rexmul2.a (𝜑𝐴 ∈ ℝ)
rexmul2.b (𝜑𝐵 ∈ ℝ*)
rexmul2.c (𝜑𝐶 ∈ ℝ*)
rexmul2.1 (𝜑 → 0 < 𝐶)
rexmul2.2 (𝜑𝐴 = (𝐵 ·e 𝐶))
Assertion
Ref Expression
rexmul2 (𝜑𝐵 ∈ ℝ)

Proof of Theorem rexmul2
StepHypRef Expression
1 rexmul2.2 . . . . 5 (𝜑𝐴 = (𝐵 ·e 𝐶))
21adantr 480 . . . 4 ((𝜑𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶))
3 simpr 484 . . . . 5 ((𝜑𝐵 = +∞) → 𝐵 = +∞)
43oveq1d 7368 . . . 4 ((𝜑𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
5 rexmul2.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
6 rexmul2.1 . . . . . 6 (𝜑 → 0 < 𝐶)
7 xmulpnf2 13195 . . . . . 6 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
85, 6, 7syl2anc 584 . . . . 5 (𝜑 → (+∞ ·e 𝐶) = +∞)
98adantr 480 . . . 4 ((𝜑𝐵 = +∞) → (+∞ ·e 𝐶) = +∞)
102, 4, 93eqtrd 2768 . . 3 ((𝜑𝐵 = +∞) → 𝐴 = +∞)
11 rexmul2.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1211renepnfd 11185 . . . . 5 (𝜑𝐴 ≠ +∞)
1312adantr 480 . . . 4 ((𝜑𝐵 = +∞) → 𝐴 ≠ +∞)
1413neneqd 2930 . . 3 ((𝜑𝐵 = +∞) → ¬ 𝐴 = +∞)
1510, 14pm2.65da 816 . 2 (𝜑 → ¬ 𝐵 = +∞)
161adantr 480 . . . 4 ((𝜑𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶))
17 simpr 484 . . . . 5 ((𝜑𝐵 = -∞) → 𝐵 = -∞)
1817oveq1d 7368 . . . 4 ((𝜑𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶))
19 xmulmnf2 13197 . . . . . 6 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞)
205, 6, 19syl2anc 584 . . . . 5 (𝜑 → (-∞ ·e 𝐶) = -∞)
2120adantr 480 . . . 4 ((𝜑𝐵 = -∞) → (-∞ ·e 𝐶) = -∞)
2216, 18, 213eqtrd 2768 . . 3 ((𝜑𝐵 = -∞) → 𝐴 = -∞)
2311renemnfd 11186 . . . . 5 (𝜑𝐴 ≠ -∞)
2423adantr 480 . . . 4 ((𝜑𝐵 = -∞) → 𝐴 ≠ -∞)
2524neneqd 2930 . . 3 ((𝜑𝐵 = -∞) → ¬ 𝐴 = -∞)
2622, 25pm2.65da 816 . 2 (𝜑 → ¬ 𝐵 = -∞)
27 rexmul2.b . . 3 (𝜑𝐵 ∈ ℝ*)
28 elxr 13036 . . 3 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2927, 28sylib 218 . 2 (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3015, 26, 29ecase23d 1475 1 (𝜑𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168   ·e cxmu 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-xneg 13032  df-xmul 13034
This theorem is referenced by:  constrext2chnlem  33716
  Copyright terms: Public domain W3C validator