| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexmul2 | Structured version Visualization version GIF version | ||
| Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13167. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| rexmul2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexmul2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rexmul2.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| rexmul2.1 | ⊢ (𝜑 → 0 < 𝐶) |
| rexmul2.2 | ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) |
| Ref | Expression |
|---|---|
| rexmul2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexmul2.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
| 4 | 3 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶)) |
| 5 | rexmul2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | rexmul2.1 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | xmulpnf2 13171 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (+∞ ·e 𝐶) = +∞) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = +∞) |
| 10 | 2, 4, 9 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = +∞) |
| 11 | rexmul2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | renepnfd 11160 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 ≠ +∞) |
| 14 | 13 | neneqd 2933 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞) |
| 15 | 10, 14 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = +∞) |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐵 = -∞) | |
| 18 | 17 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶)) |
| 19 | xmulmnf2 13173 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞) | |
| 20 | 5, 6, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (-∞ ·e 𝐶) = -∞) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (-∞ ·e 𝐶) = -∞) |
| 22 | 16, 18, 21 | 3eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = -∞) |
| 23 | 11 | renemnfd 11161 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 ≠ -∞) |
| 25 | 24 | neneqd 2933 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → ¬ 𝐴 = -∞) |
| 26 | 22, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = -∞) |
| 27 | rexmul2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 28 | elxr 13012 | . . 3 ⊢ (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
| 30 | 15, 26, 29 | ecase23d 1475 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 0cc0 11003 +∞cpnf 11140 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 ·e cxmu 13007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-xneg 13008 df-xmul 13010 |
| This theorem is referenced by: constrext2chnlem 33758 |
| Copyright terms: Public domain | W3C validator |