| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexmul2 | Structured version Visualization version GIF version | ||
| Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13244. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| rexmul2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexmul2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rexmul2.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| rexmul2.1 | ⊢ (𝜑 → 0 < 𝐶) |
| rexmul2.2 | ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) |
| Ref | Expression |
|---|---|
| rexmul2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexmul2.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
| 4 | 3 | oveq1d 7409 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶)) |
| 5 | rexmul2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | rexmul2.1 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | xmulpnf2 13248 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (+∞ ·e 𝐶) = +∞) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = +∞) |
| 10 | 2, 4, 9 | 3eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = +∞) |
| 11 | rexmul2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | renepnfd 11243 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 ≠ +∞) |
| 14 | 13 | neneqd 2932 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞) |
| 15 | 10, 14 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = +∞) |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐵 = -∞) | |
| 18 | 17 | oveq1d 7409 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶)) |
| 19 | xmulmnf2 13250 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞) | |
| 20 | 5, 6, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (-∞ ·e 𝐶) = -∞) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (-∞ ·e 𝐶) = -∞) |
| 22 | 16, 18, 21 | 3eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = -∞) |
| 23 | 11 | renemnfd 11244 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 ≠ -∞) |
| 25 | 24 | neneqd 2932 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → ¬ 𝐴 = -∞) |
| 26 | 22, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = -∞) |
| 27 | rexmul2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 28 | elxr 13089 | . . 3 ⊢ (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
| 30 | 15, 26, 29 | ecase23d 1475 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 class class class wbr 5115 (class class class)co 7394 ℝcr 11085 0cc0 11086 +∞cpnf 11223 -∞cmnf 11224 ℝ*cxr 11225 < clt 11226 ·e cxmu 13084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-xneg 13085 df-xmul 13087 |
| This theorem is referenced by: constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |