| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexmul2 | Structured version Visualization version GIF version | ||
| Description: If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13294. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| rexmul2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexmul2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rexmul2.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| rexmul2.1 | ⊢ (𝜑 → 0 < 𝐶) |
| rexmul2.2 | ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) |
| Ref | Expression |
|---|---|
| rexmul2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexmul2.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐵 = +∞) | |
| 4 | 3 | oveq1d 7427 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶)) |
| 5 | rexmul2.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | rexmul2.1 | . . . . . 6 ⊢ (𝜑 → 0 < 𝐶) | |
| 7 | xmulpnf2 13298 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (+∞ ·e 𝐶) = +∞) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → (+∞ ·e 𝐶) = +∞) |
| 10 | 2, 4, 9 | 3eqtrd 2773 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 = +∞) |
| 11 | rexmul2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | renepnfd 11293 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = +∞) → 𝐴 ≠ +∞) |
| 14 | 13 | neneqd 2936 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = +∞) → ¬ 𝐴 = +∞) |
| 15 | 10, 14 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = +∞) |
| 16 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = (𝐵 ·e 𝐶)) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐵 = -∞) | |
| 18 | 17 | oveq1d 7427 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) = (-∞ ·e 𝐶)) |
| 19 | xmulmnf2 13300 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞) | |
| 20 | 5, 6, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (-∞ ·e 𝐶) = -∞) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → (-∞ ·e 𝐶) = -∞) |
| 22 | 16, 18, 21 | 3eqtrd 2773 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 = -∞) |
| 23 | 11 | renemnfd 11294 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = -∞) → 𝐴 ≠ -∞) |
| 25 | 24 | neneqd 2936 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = -∞) → ¬ 𝐴 = -∞) |
| 26 | 22, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐵 = -∞) |
| 27 | rexmul2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 28 | elxr 13139 | . . 3 ⊢ (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) | |
| 29 | 27, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) |
| 30 | 15, 26, 29 | ecase23d 1474 | 1 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 (class class class)co 7412 ℝcr 11135 0cc0 11136 +∞cpnf 11273 -∞cmnf 11274 ℝ*cxr 11275 < clt 11276 ·e cxmu 13134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-xneg 13135 df-xmul 13137 |
| This theorem is referenced by: constrext2chnlem 33721 |
| Copyright terms: Public domain | W3C validator |