Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-sup3d Structured version   Visualization version   GIF version

Theorem sn-sup3d 42183
Description: sup3 12217 without ax-mulcom 11213, proven trivially from sn-sup2 42182. (Contributed by SN, 29-Jun-2025.)
Hypotheses
Ref Expression
sn-sup3d.1 (𝜑𝐴 ⊆ ℝ)
sn-sup3d.2 (𝜑𝐴 ≠ ∅)
sn-sup3d.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
sn-sup3d (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sn-sup3d
StepHypRef Expression
1 sn-sup3d.1 . 2 (𝜑𝐴 ⊆ ℝ)
2 sn-sup3d.2 . 2 (𝜑𝐴 ≠ ∅)
3 sn-sup3d.3 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4 ssel 3972 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 leloe 11341 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
65expcom 412 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥))))
74, 6syl9 77 . . . . . . 7 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))))
87imp31 416 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
98ralbidva 3166 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
109rexbidva 3167 . . . 4 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
111, 10syl 17 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
123, 11mpbid 231 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥))
13 sn-sup2 42182 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
141, 2, 12, 13syl3anc 1368 1 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  wcel 2099  wne 2930  wral 3051  wrex 3060  wss 3946  c0 4322   class class class wbr 5145  cr 11148   < clt 11289  cle 11290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-2 12321  df-3 12322  df-resub 42077
This theorem is referenced by:  sn-suprcld  42184  sn-suprubd  42185
  Copyright terms: Public domain W3C validator