Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Structured version   Visualization version   GIF version

Theorem jm2.17a 42162
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))

Proof of Theorem jm2.17a
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . . 5 (𝑎 = 0 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑0))
2 oveq1 7419 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
32oveq2d 7428 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
41, 3breq12d 5161 . . . 4 (𝑎 = 0 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1))))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))))
6 oveq2 7420 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑏))
7 oveq1 7419 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
87oveq2d 7428 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
96, 8breq12d 5161 . . . 4 (𝑎 = 𝑏 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))))
11 oveq2 7420 . . . . 5 (𝑎 = (𝑏 + 1) → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑(𝑏 + 1)))
12 oveq1 7419 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1312oveq2d 7428 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
1411, 13breq12d 5161 . . . 4 (𝑎 = (𝑏 + 1) → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
16 oveq2 7420 . . . . 5 (𝑎 = 𝑁 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑁))
17 oveq1 7419 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1817oveq2d 7428 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
1916, 18breq12d 5161 . . . 4 (𝑎 = 𝑁 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))))
21 1le1 11849 . . . . 5 1 ≤ 1
2221a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ≤ 1)
23 2cn 12294 . . . . . . 7 2 ∈ ℂ
24 eluzelcn 12841 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25 mulcl 11200 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
2623, 24, 25sylancr 586 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
27 ax-1cn 11174 . . . . . 6 1 ∈ ℂ
28 subcl 11466 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝐴) − 1) ∈ ℂ)
2926, 27, 28sylancl 585 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℂ)
3029exp0d 14112 . . . 4 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) = 1)
31 0p1e1 12341 . . . . . 6 (0 + 1) = 1
3231oveq2i 7423 . . . . 5 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
33 rmy1 42132 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3432, 33eqtrid 2783 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
3522, 30, 343brtr4d 5180 . . 3 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))
36 2re 12293 . . . . . . . . . 10 2 ∈ ℝ
37 eluzelre 12840 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3837adantl 481 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
39 remulcl 11201 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4036, 38, 39sylancr 586 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
41 1re 11221 . . . . . . . . 9 1 ∈ ℝ
42 resubcl 11531 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝐴) − 1) ∈ ℝ)
4340, 41, 42sylancl 585 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) − 1) ∈ ℝ)
44 peano2nn0 12519 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
4544adantr 480 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
4643, 45reexpcld 14135 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
47463adant3 1131 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
48 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
49 nn0z 12590 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
5049adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
5150peano2zd 12676 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
52 frmy 42116 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5352fovcl 7540 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5453zred 12673 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5548, 51, 54syl2anc 583 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5655, 43remulcld 11251 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
57563adant3 1131 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
5851peano2zd 12676 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
5952fovcl 7540 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
6059zred 12673 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
6148, 58, 60syl2anc 583 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
62613adant3 1131 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
63293ad2ant2 1133 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((2 · 𝐴) − 1) ∈ ℂ)
64 simp1 1135 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → 𝑏 ∈ ℕ0)
6563, 64expp1d 14119 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) = ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6743, 66reexpcld 14135 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑𝑏) ∈ ℝ)
68 2nn 12292 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12875 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
7069adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
71 nnmulcl 12243 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7268, 70, 71sylancr 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℕ)
73 nnm1nn0 12520 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
74 nn0ge0 12504 . . . . . . . . . . 11 (((2 · 𝐴) − 1) ∈ ℕ0 → 0 ≤ ((2 · 𝐴) − 1))
7572, 73, 743syl 18 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝐴) − 1))
7643, 75jca 511 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1)))
7767, 55, 763jca 1127 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))))
78 lemul1a 12075 . . . . . . . 8 ((((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
7977, 78stoic3 1777 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
8065, 79eqbrtrd 5170 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
81 nn0cn 12489 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
83 pncan 11473 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
8482, 27, 83sylancl 585 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
8584oveq2d 7428 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
8652fovcl 7540 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
8786zred 12673 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
8848, 50, 87syl2anc 583 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
8985, 88eqeltrd 2832 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
90 remulcl 11201 . . . . . . . . . 10 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9155, 41, 90sylancl 585 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9240, 55remulcld 11251 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
93 nn0re 12488 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
9493adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
9594lep1d 12152 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ≤ (𝑏 + 1))
96 lermy 42157 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9748, 50, 51, 96syl3anc 1370 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9895, 97mpbid 231 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))
9955recnd 11249 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℂ)
10099mulridd 11238 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) = (𝐴 Yrm (𝑏 + 1)))
10198, 85, 1003brtr4d 5180 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · 1))
10289, 91, 92, 101lesub2dd 11838 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)) ≤ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
10340recnd 11249 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
10427a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 1 ∈ ℂ)
10599, 103, 104subdid 11677 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
10699, 103mulcomd 11242 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
107106oveq1d 7427 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
108105, 107eqtrd 2771 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
109 rmyluc2 42140 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
11048, 51, 109syl2anc 583 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
111102, 108, 1103brtr4d 5180 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1121113adant3 1131 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
11347, 57, 62, 80, 112letrd 11378 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1141133exp 1118 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
115114a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
1165, 10, 15, 20, 35, 115nn0ind 12664 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
117116impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  cle 11256  cmin 11451  cn 12219  2c2 12274  0cn0 12479  cz 12565  cuz 12829  cexp 14034   Yrm crmy 42102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-sin 16020  df-cos 16021  df-pi 16023  df-dvds 16205  df-gcd 16443  df-numer 16678  df-denom 16679  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-limc 25715  df-dv 25716  df-log 26405  df-squarenn 42042  df-pell1qr 42043  df-pell14qr 42044  df-pell1234qr 42045  df-pellfund 42046  df-rmx 42103  df-rmy 42104
This theorem is referenced by:  jm3.1lem1  42219
  Copyright terms: Public domain W3C validator