Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Structured version   Visualization version   GIF version

Theorem jm2.17a 42984
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))

Proof of Theorem jm2.17a
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . 5 (𝑎 = 0 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑0))
2 oveq1 7412 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
32oveq2d 7421 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
41, 3breq12d 5132 . . . 4 (𝑎 = 0 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1))))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))))
6 oveq2 7413 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑏))
7 oveq1 7412 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
87oveq2d 7421 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
96, 8breq12d 5132 . . . 4 (𝑎 = 𝑏 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))))
11 oveq2 7413 . . . . 5 (𝑎 = (𝑏 + 1) → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑(𝑏 + 1)))
12 oveq1 7412 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1312oveq2d 7421 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
1411, 13breq12d 5132 . . . 4 (𝑎 = (𝑏 + 1) → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
16 oveq2 7413 . . . . 5 (𝑎 = 𝑁 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑁))
17 oveq1 7412 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1817oveq2d 7421 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
1916, 18breq12d 5132 . . . 4 (𝑎 = 𝑁 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))))
21 1le1 11865 . . . . 5 1 ≤ 1
2221a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ≤ 1)
23 2cn 12315 . . . . . . 7 2 ∈ ℂ
24 eluzelcn 12864 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25 mulcl 11213 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
2623, 24, 25sylancr 587 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
27 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
28 subcl 11481 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝐴) − 1) ∈ ℂ)
2926, 27, 28sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℂ)
3029exp0d 14158 . . . 4 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) = 1)
31 0p1e1 12362 . . . . . 6 (0 + 1) = 1
3231oveq2i 7416 . . . . 5 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
33 rmy1 42954 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3432, 33eqtrid 2782 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
3522, 30, 343brtr4d 5151 . . 3 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))
36 2re 12314 . . . . . . . . . 10 2 ∈ ℝ
37 eluzelre 12863 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3837adantl 481 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
39 remulcl 11214 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4036, 38, 39sylancr 587 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
41 1re 11235 . . . . . . . . 9 1 ∈ ℝ
42 resubcl 11547 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝐴) − 1) ∈ ℝ)
4340, 41, 42sylancl 586 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) − 1) ∈ ℝ)
44 peano2nn0 12541 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
4544adantr 480 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
4643, 45reexpcld 14181 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
47463adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
48 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
49 nn0z 12613 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
5049adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
5150peano2zd 12700 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
52 frmy 42938 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5352fovcl 7535 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5453zred 12697 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5548, 51, 54syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5655, 43remulcld 11265 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
57563adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
5851peano2zd 12700 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
5952fovcl 7535 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
6059zred 12697 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
6148, 58, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
62613adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
63293ad2ant2 1134 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((2 · 𝐴) − 1) ∈ ℂ)
64 simp1 1136 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → 𝑏 ∈ ℕ0)
6563, 64expp1d 14165 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) = ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6743, 66reexpcld 14181 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑𝑏) ∈ ℝ)
68 2nn 12313 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12898 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
7069adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
71 nnmulcl 12264 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7268, 70, 71sylancr 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℕ)
73 nnm1nn0 12542 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
74 nn0ge0 12526 . . . . . . . . . . 11 (((2 · 𝐴) − 1) ∈ ℕ0 → 0 ≤ ((2 · 𝐴) − 1))
7572, 73, 743syl 18 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝐴) − 1))
7643, 75jca 511 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1)))
7767, 55, 763jca 1128 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))))
78 lemul1a 12095 . . . . . . . 8 ((((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
7977, 78stoic3 1776 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
8065, 79eqbrtrd 5141 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
81 nn0cn 12511 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
83 pncan 11488 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
8482, 27, 83sylancl 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
8584oveq2d 7421 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
8652fovcl 7535 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
8786zred 12697 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
8848, 50, 87syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
8985, 88eqeltrd 2834 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
90 remulcl 11214 . . . . . . . . . 10 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9155, 41, 90sylancl 586 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9240, 55remulcld 11265 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
93 nn0re 12510 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
9493adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
9594lep1d 12173 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ≤ (𝑏 + 1))
96 lermy 42979 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9748, 50, 51, 96syl3anc 1373 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9895, 97mpbid 232 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))
9955recnd 11263 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℂ)
10099mulridd 11252 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) = (𝐴 Yrm (𝑏 + 1)))
10198, 85, 1003brtr4d 5151 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · 1))
10289, 91, 92, 101lesub2dd 11854 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)) ≤ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
10340recnd 11263 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
10427a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 1 ∈ ℂ)
10599, 103, 104subdid 11693 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
10699, 103mulcomd 11256 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
107106oveq1d 7420 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
108105, 107eqtrd 2770 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
109 rmyluc2 42962 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
11048, 51, 109syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
111102, 108, 1103brtr4d 5151 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1121113adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
11347, 57, 62, 80, 112letrd 11392 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1141133exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
115114a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
1165, 10, 15, 20, 35, 115nn0ind 12688 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
117116impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cexp 14079   Yrm crmy 42924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-squarenn 42864  df-pell1qr 42865  df-pell14qr 42866  df-pell1234qr 42867  df-pellfund 42868  df-rmx 42925  df-rmy 42926
This theorem is referenced by:  jm3.1lem1  43041
  Copyright terms: Public domain W3C validator