Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Structured version   Visualization version   GIF version

Theorem jm2.17a 43077
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))

Proof of Theorem jm2.17a
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . . 5 (𝑎 = 0 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑0))
2 oveq1 7359 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
32oveq2d 7368 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
41, 3breq12d 5106 . . . 4 (𝑎 = 0 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1))))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))))
6 oveq2 7360 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑏))
7 oveq1 7359 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
87oveq2d 7368 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
96, 8breq12d 5106 . . . 4 (𝑎 = 𝑏 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))))
11 oveq2 7360 . . . . 5 (𝑎 = (𝑏 + 1) → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑(𝑏 + 1)))
12 oveq1 7359 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1312oveq2d 7368 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
1411, 13breq12d 5106 . . . 4 (𝑎 = (𝑏 + 1) → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
16 oveq2 7360 . . . . 5 (𝑎 = 𝑁 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑁))
17 oveq1 7359 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1817oveq2d 7368 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
1916, 18breq12d 5106 . . . 4 (𝑎 = 𝑁 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))))
21 1le1 11752 . . . . 5 1 ≤ 1
2221a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ≤ 1)
23 2cn 12207 . . . . . . 7 2 ∈ ℂ
24 eluzelcn 12750 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25 mulcl 11097 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
2623, 24, 25sylancr 587 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
27 ax-1cn 11071 . . . . . 6 1 ∈ ℂ
28 subcl 11366 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝐴) − 1) ∈ ℂ)
2926, 27, 28sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℂ)
3029exp0d 14049 . . . 4 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) = 1)
31 0p1e1 12249 . . . . . 6 (0 + 1) = 1
3231oveq2i 7363 . . . . 5 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
33 rmy1 43047 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3432, 33eqtrid 2780 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
3522, 30, 343brtr4d 5125 . . 3 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))
36 2re 12206 . . . . . . . . . 10 2 ∈ ℝ
37 eluzelre 12749 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3837adantl 481 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
39 remulcl 11098 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4036, 38, 39sylancr 587 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
41 1re 11119 . . . . . . . . 9 1 ∈ ℝ
42 resubcl 11432 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝐴) − 1) ∈ ℝ)
4340, 41, 42sylancl 586 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) − 1) ∈ ℝ)
44 peano2nn0 12428 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
4544adantr 480 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
4643, 45reexpcld 14072 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
47463adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
48 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
49 nn0z 12499 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
5049adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
5150peano2zd 12586 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
52 frmy 43031 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5352fovcl 7480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5453zred 12583 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5548, 51, 54syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5655, 43remulcld 11149 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
57563adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
5851peano2zd 12586 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
5952fovcl 7480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
6059zred 12583 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
6148, 58, 60syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
62613adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
63293ad2ant2 1134 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((2 · 𝐴) − 1) ∈ ℂ)
64 simp1 1136 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → 𝑏 ∈ ℕ0)
6563, 64expp1d 14056 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) = ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6743, 66reexpcld 14072 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑𝑏) ∈ ℝ)
68 2nn 12205 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12788 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
7069adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
71 nnmulcl 12156 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7268, 70, 71sylancr 587 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℕ)
73 nnm1nn0 12429 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
74 nn0ge0 12413 . . . . . . . . . . 11 (((2 · 𝐴) − 1) ∈ ℕ0 → 0 ≤ ((2 · 𝐴) − 1))
7572, 73, 743syl 18 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝐴) − 1))
7643, 75jca 511 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1)))
7767, 55, 763jca 1128 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))))
78 lemul1a 11982 . . . . . . . 8 ((((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
7977, 78stoic3 1777 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
8065, 79eqbrtrd 5115 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
81 nn0cn 12398 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
83 pncan 11373 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
8482, 27, 83sylancl 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
8584oveq2d 7368 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
8652fovcl 7480 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
8786zred 12583 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
8848, 50, 87syl2anc 584 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
8985, 88eqeltrd 2833 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
90 remulcl 11098 . . . . . . . . . 10 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9155, 41, 90sylancl 586 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9240, 55remulcld 11149 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
93 nn0re 12397 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
9493adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
9594lep1d 12060 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ≤ (𝑏 + 1))
96 lermy 43072 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9748, 50, 51, 96syl3anc 1373 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9895, 97mpbid 232 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))
9955recnd 11147 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℂ)
10099mulridd 11136 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) = (𝐴 Yrm (𝑏 + 1)))
10198, 85, 1003brtr4d 5125 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · 1))
10289, 91, 92, 101lesub2dd 11741 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)) ≤ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
10340recnd 11147 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
10427a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 1 ∈ ℂ)
10599, 103, 104subdid 11580 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
10699, 103mulcomd 11140 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
107106oveq1d 7367 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
108105, 107eqtrd 2768 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
109 rmyluc2 43055 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
11048, 51, 109syl2anc 584 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
111102, 108, 1103brtr4d 5125 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1121113adant3 1132 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
11347, 57, 62, 80, 112letrd 11277 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1141133exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
115114a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
1165, 10, 15, 20, 35, 115nn0ind 12574 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
117116impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cle 11154  cmin 11351  cn 12132  2c2 12187  0cn0 12388  cz 12475  cuz 12738  cexp 13970   Yrm crmy 43018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-gcd 16408  df-numer 16648  df-denom 16649  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-squarenn 42958  df-pell1qr 42959  df-pell14qr 42960  df-pell1234qr 42961  df-pellfund 42962  df-rmx 43019  df-rmy 43020
This theorem is referenced by:  jm3.1lem1  43134
  Copyright terms: Public domain W3C validator