MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   GIF version

Theorem numclwwlk7 30327
Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 30276 or frrusgrord 30277, and p divides (k-1), i.e., (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 30201, as well as k-regular (for any k), see 0vtxrgr 29511, but has no closed walk, see 0clwlk0 30068, this theorem would be false for a null graph: ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0 ≠ 1, so this case must be excluded (by assuming 𝑉 ≠ ∅). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
2 simplr 768 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
3 simprr 772 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
41, 2, 33jca 1128 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
5 numclwwlk6.v . . . 4 𝑉 = (Vtx‘𝐺)
65numclwwlk6 30326 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
74, 6stoic3 1776 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
8 simp2 1137 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
98ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
10 simp1 1136 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
1110ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))
125frrusgrord 30277 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
139, 11, 12sylc 65 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
1413oveq1d 7405 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
155numclwwlk7lem 30325 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
16 nn0cn 12459 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
17 peano2cnm 11495 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℂ)
1916, 18mulcomd 11202 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) = ((𝐾 − 1) · 𝐾))
2019oveq1d 7405 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
2120adantr 480 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
22 prmnn 16651 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2322ad2antrl 728 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
24 nn0z 12561 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
25 peano2zm 12583 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
2624, 25syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
2726adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
2824adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
2923, 27, 283jca 1128 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
30 simprr 772 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
31 mulmoddvds 16307 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0))
3229, 30, 31sylc 65 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0)
3321, 32eqtrd 2765 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = 0)
3422nnred 12208 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35 prmgt1 16674 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 < 𝑃)
3634, 35jca 511 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3736ad2antrl 728 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
38 1mod 13872 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3937, 38syl 17 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
4033, 39oveq12d 7408 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) = (0 + 1))
4140oveq1d 7405 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
42 nn0re 12458 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
43 peano2rem 11496 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
4442, 43syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
4542, 44remulcld 11211 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℝ)
4645adantr 480 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 · (𝐾 − 1)) ∈ ℝ)
47 1red 11182 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 1 ∈ ℝ)
4822nnrpd 13000 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
4948ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
50 modaddabs 13880 . . . . 5 (((𝐾 · (𝐾 − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
5146, 47, 49, 50syl3anc 1373 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
52 0p1e1 12310 . . . . . 6 (0 + 1) = 1
5352oveq1i 7400 . . . . 5 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
5434, 35, 38syl2anc 584 . . . . . 6 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
5554ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
5653, 55eqtrid 2777 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
5741, 51, 563eqtr3d 2773 . . 3 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5815, 57stoic3 1776 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
597, 14, 583eqtrd 2769 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  cn 12193  0cn0 12449  cz 12536  +crp 12958   mod cmo 13838  chash 14302  cdvds 16229  cprime 16648  Vtxcvtx 28930   RegUSGraph crusgr 29491   ClWWalksN cclwwlkn 29960   FriendGraph cfrgr 30194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-s2 14821  df-s3 14822  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-fusgr 29251  df-nbgr 29267  df-vtxdg 29401  df-rgr 29492  df-rusgr 29493  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-spths 29652  df-pthson 29653  df-spthson 29654  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769  df-wspthsn 29770  df-wspthsnon 29771  df-clwwlk 29918  df-clwwlkn 29961  df-clwwlknon 30024  df-frgr 30195
This theorem is referenced by:  frgrreggt1  30329
  Copyright terms: Public domain W3C validator