MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   GIF version

Theorem numclwwlk7 30320
Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 30269 or frrusgrord 30270, and p divides (k-1), i.e., (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 30194, as well as k-regular (for any k), see 0vtxrgr 29504, but has no closed walk, see 0clwlk0 30061, this theorem would be false for a null graph: ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0 ≠ 1, so this case must be excluded (by assuming 𝑉 ≠ ∅). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
2 simplr 768 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
3 simprr 772 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
41, 2, 33jca 1128 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
5 numclwwlk6.v . . . 4 𝑉 = (Vtx‘𝐺)
65numclwwlk6 30319 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
74, 6stoic3 1776 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
8 simp2 1137 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
98ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
10 simp1 1136 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
1110ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))
125frrusgrord 30270 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
139, 11, 12sylc 65 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
1413oveq1d 7402 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
155numclwwlk7lem 30318 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
16 nn0cn 12452 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
17 peano2cnm 11488 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℂ)
1916, 18mulcomd 11195 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) = ((𝐾 − 1) · 𝐾))
2019oveq1d 7402 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
2120adantr 480 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
22 prmnn 16644 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2322ad2antrl 728 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
24 nn0z 12554 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
25 peano2zm 12576 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
2624, 25syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
2726adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
2824adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
2923, 27, 283jca 1128 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
30 simprr 772 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
31 mulmoddvds 16300 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0))
3229, 30, 31sylc 65 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0)
3321, 32eqtrd 2764 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = 0)
3422nnred 12201 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35 prmgt1 16667 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 < 𝑃)
3634, 35jca 511 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3736ad2antrl 728 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
38 1mod 13865 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3937, 38syl 17 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
4033, 39oveq12d 7405 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) = (0 + 1))
4140oveq1d 7402 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
42 nn0re 12451 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
43 peano2rem 11489 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
4442, 43syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
4542, 44remulcld 11204 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℝ)
4645adantr 480 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 · (𝐾 − 1)) ∈ ℝ)
47 1red 11175 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 1 ∈ ℝ)
4822nnrpd 12993 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
4948ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
50 modaddabs 13873 . . . . 5 (((𝐾 · (𝐾 − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
5146, 47, 49, 50syl3anc 1373 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
52 0p1e1 12303 . . . . . 6 (0 + 1) = 1
5352oveq1i 7397 . . . . 5 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
5434, 35, 38syl2anc 584 . . . . . 6 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
5554ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
5653, 55eqtrid 2776 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
5741, 51, 563eqtr3d 2772 . . 3 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5815, 57stoic3 1776 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
597, 14, 583eqtrd 2768 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  cn 12186  0cn0 12442  cz 12529  +crp 12951   mod cmo 13831  chash 14295  cdvds 16222  cprime 16641  Vtxcvtx 28923   RegUSGraph crusgr 29484   ClWWalksN cclwwlkn 29953   FriendGraph cfrgr 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-s2 14814  df-s3 14815  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-fusgr 29244  df-nbgr 29260  df-vtxdg 29394  df-rgr 29485  df-rusgr 29486  df-wlks 29527  df-wlkson 29528  df-trls 29620  df-trlson 29621  df-pths 29644  df-spths 29645  df-pthson 29646  df-spthson 29647  df-wwlks 29760  df-wwlksn 29761  df-wwlksnon 29762  df-wspthsn 29763  df-wspthsnon 29764  df-clwwlk 29911  df-clwwlkn 29954  df-clwwlknon 30017  df-frgr 30188
This theorem is referenced by:  frgrreggt1  30322
  Copyright terms: Public domain W3C validator