MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   GIF version

Theorem numclwwlk7 28176
Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 28125 or frrusgrord 28126, and p divides (k-1), i.e. (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 28050, as well as k-regular (for any k), see 0vtxrgr 27366, but has no closed walk, see 0clwlk0 27917, this theorem would be false for a null graph: ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0 ≠ 1, so this case must be excluded (by assuming 𝑉 ≠ ∅). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
2 simplr 768 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
3 simprr 772 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
41, 2, 33jca 1125 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
5 numclwwlk6.v . . . 4 𝑉 = (Vtx‘𝐺)
65numclwwlk6 28175 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
74, 6stoic3 1778 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
8 simp2 1134 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
98ancomd 465 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
10 simp1 1133 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
1110ancomd 465 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))
125frrusgrord 28126 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
139, 11, 12sylc 65 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
1413oveq1d 7150 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
155numclwwlk7lem 28174 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
16 nn0cn 11895 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
17 peano2cnm 10941 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℂ)
1916, 18mulcomd 10651 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) = ((𝐾 − 1) · 𝐾))
2019oveq1d 7150 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
2120adantr 484 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
22 prmnn 16008 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2322ad2antrl 727 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
24 nn0z 11993 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
25 peano2zm 12013 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
2624, 25syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
2726adantr 484 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
2824adantr 484 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
2923, 27, 283jca 1125 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
30 simprr 772 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
31 mulmoddvds 15671 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0))
3229, 30, 31sylc 65 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0)
3321, 32eqtrd 2833 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = 0)
3422nnred 11640 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35 prmgt1 16031 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 < 𝑃)
3634, 35jca 515 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3736ad2antrl 727 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
38 1mod 13266 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3937, 38syl 17 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
4033, 39oveq12d 7153 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) = (0 + 1))
4140oveq1d 7150 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
42 nn0re 11894 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
43 peano2rem 10942 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
4442, 43syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
4542, 44remulcld 10660 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℝ)
4645adantr 484 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 · (𝐾 − 1)) ∈ ℝ)
47 1red 10631 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 1 ∈ ℝ)
4822nnrpd 12417 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
4948ad2antrl 727 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
50 modaddabs 13272 . . . . 5 (((𝐾 · (𝐾 − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
5146, 47, 49, 50syl3anc 1368 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
52 0p1e1 11747 . . . . . 6 (0 + 1) = 1
5352oveq1i 7145 . . . . 5 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
5434, 35, 38syl2anc 587 . . . . . 6 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
5554ad2antrl 727 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
5653, 55syl5eq 2845 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
5741, 51, 563eqtr3d 2841 . . 3 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5815, 57stoic3 1778 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
597, 14, 583eqtrd 2837 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  cn 11625  0cn0 11885  cz 11969  +crp 12377   mod cmo 13232  chash 13686  cdvds 15599  cprime 16005  Vtxcvtx 26789   RegUSGraph crusgr 27346   ClWWalksN cclwwlkn 27809   FriendGraph cfrgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-s2 14201  df-s3 14202  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-vtx 26791  df-iedg 26792  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-fusgr 27107  df-nbgr 27123  df-vtxdg 27256  df-rgr 27347  df-rusgr 27348  df-wlks 27389  df-wlkson 27390  df-trls 27482  df-trlson 27483  df-pths 27505  df-spths 27506  df-pthson 27507  df-spthson 27508  df-wwlks 27616  df-wwlksn 27617  df-wwlksnon 27618  df-wspthsn 27619  df-wspthsnon 27620  df-clwwlk 27767  df-clwwlkn 27810  df-clwwlknon 27873  df-frgr 28044
This theorem is referenced by:  frgrreggt1  28178
  Copyright terms: Public domain W3C validator