MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk7 Structured version   Visualization version   GIF version

Theorem numclwwlk7 30371
Description: Statement 14 in [Huneke] p. 2: "The total number of closed walks of length p [in a friendship graph] is (k(k-1)+1)f(p)=1 (mod p)", since the number of vertices in a friendship graph is (k(k-1)+1), see frrusgrord0 30320 or frrusgrord 30321, and p divides (k-1), i.e., (k-1) mod p = 0 => k(k-1) mod p = 0 => k(k-1)+1 mod p = 1. Since the null graph is a friendship graph, see frgr0 30245, as well as k-regular (for any k), see 0vtxrgr 29555, but has no closed walk, see 0clwlk0 30112, this theorem would be false for a null graph: ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0 ≠ 1, so this case must be excluded (by assuming 𝑉 ≠ ∅). (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)

Proof of Theorem numclwwlk7
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
2 simplr 768 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
3 simprr 772 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
41, 2, 33jca 1128 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
5 numclwwlk6.v . . . 4 𝑉 = (Vtx‘𝐺)
65numclwwlk6 30370 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
74, 6stoic3 1777 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = ((♯‘𝑉) mod 𝑃))
8 simp2 1137 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
98ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
10 simp1 1136 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
1110ancomd 461 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))
125frrusgrord 30321 . . . 4 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
139, 11, 12sylc 65 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
1413oveq1d 7361 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘𝑉) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
155numclwwlk7lem 30369 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
16 nn0cn 12391 . . . . . . . . . 10 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
17 peano2cnm 11427 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℂ)
1916, 18mulcomd 11133 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) = ((𝐾 − 1) · 𝐾))
2019oveq1d 7361 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
2120adantr 480 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = (((𝐾 − 1) · 𝐾) mod 𝑃))
22 prmnn 16585 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2322ad2antrl 728 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
24 nn0z 12493 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
25 peano2zm 12515 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
2624, 25syl 17 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
2726adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
2824adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
2923, 27, 283jca 1128 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ))
30 simprr 772 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
31 mulmoddvds 16241 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0))
3229, 30, 31sylc 65 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · 𝐾) mod 𝑃) = 0)
3321, 32eqtrd 2766 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 · (𝐾 − 1)) mod 𝑃) = 0)
3422nnred 12140 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
35 prmgt1 16608 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 < 𝑃)
3634, 35jca 511 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3736ad2antrl 728 . . . . . . 7 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
38 1mod 13807 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3937, 38syl 17 . . . . . 6 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
4033, 39oveq12d 7364 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) = (0 + 1))
4140oveq1d 7361 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
42 nn0re 12390 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
43 peano2rem 11428 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
4442, 43syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
4542, 44remulcld 11142 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℝ)
4645adantr 480 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 · (𝐾 − 1)) ∈ ℝ)
47 1red 11113 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 1 ∈ ℝ)
4822nnrpd 12932 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
4948ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
50 modaddabs 13815 . . . . 5 (((𝐾 · (𝐾 − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
5146, 47, 49, 50syl3anc 1373 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 · (𝐾 − 1)) mod 𝑃) + (1 mod 𝑃)) mod 𝑃) = (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃))
52 0p1e1 12242 . . . . . 6 (0 + 1) = 1
5352oveq1i 7356 . . . . 5 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
5434, 35, 38syl2anc 584 . . . . . 6 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
5554ad2antrl 728 . . . . 5 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (1 mod 𝑃) = 1)
5653, 55eqtrid 2778 . . . 4 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
5741, 51, 563eqtr3d 2774 . . 3 ((𝐾 ∈ ℕ0 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
5815, 57stoic3 1777 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 · (𝐾 − 1)) + 1) mod 𝑃) = 1)
597, 14, 583eqtrd 2770 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  cn 12125  0cn0 12381  cz 12468  +crp 12890   mod cmo 13773  chash 14237  cdvds 16163  cprime 16582  Vtxcvtx 28974   RegUSGraph crusgr 29535   ClWWalksN cclwwlkn 30004   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-s2 14755  df-s3 14756  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-vtx 28976  df-iedg 28977  df-edg 29026  df-uhgr 29036  df-ushgr 29037  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-fusgr 29295  df-nbgr 29311  df-vtxdg 29445  df-rgr 29536  df-rusgr 29537  df-wlks 29578  df-wlkson 29579  df-trls 29669  df-trlson 29670  df-pths 29692  df-spths 29693  df-pthson 29694  df-spthson 29695  df-wwlks 29808  df-wwlksn 29809  df-wwlksnon 29810  df-wspthsn 29811  df-wspthsnon 29812  df-clwwlk 29962  df-clwwlkn 30005  df-clwwlknon 30068  df-frgr 30239
This theorem is referenced by:  frgrreggt1  30373
  Copyright terms: Public domain W3C validator