HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Visualization version   GIF version

Theorem cdj3lem2 30204
Description: Lemma for cdj3i 30210. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5 𝐴S
2 cdj3lem2.2 . . . . 5 𝐵S
31, 2shsvai 29133 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵))
4 eqeq1 2823 . . . . . . 7 (𝑥 = (𝐶 + 𝐷) → (𝑥 = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝑧 + 𝑤)))
54rexbidv 3295 . . . . . 6 (𝑥 = (𝐶 + 𝐷) → (∃𝑤𝐵 𝑥 = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
65riotabidv 7108 . . . . 5 (𝑥 = (𝐶 + 𝐷) → (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
7 cdj3lem2.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
8 riotaex 7110 . . . . 5 (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) ∈ V
96, 7, 8fvmpt 6761 . . . 4 ((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
103, 9syl 17 . . 3 ((𝐶𝐴𝐷𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
11103adant3 1127 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
12 eqid 2819 . . . . 5 (𝐶 + 𝐷) = (𝐶 + 𝐷)
13 oveq2 7156 . . . . . 6 (𝑤 = 𝐷 → (𝐶 + 𝑤) = (𝐶 + 𝐷))
1413rspceeqv 3636 . . . . 5 ((𝐷𝐵 ∧ (𝐶 + 𝐷) = (𝐶 + 𝐷)) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
1512, 14mpan2 689 . . . 4 (𝐷𝐵 → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
16153ad2ant2 1129 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
17 simp1 1131 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → 𝐶𝐴)
181, 2cdjreui 30201 . . . . 5 (((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
193, 18stoic3 1771 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
20 oveq1 7155 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 + 𝑤) = (𝐶 + 𝑤))
2120eqeq2d 2830 . . . . . 6 (𝑧 = 𝐶 → ((𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2221rexbidv 3295 . . . . 5 (𝑧 = 𝐶 → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2322riota2 7131 . . . 4 ((𝐶𝐴 ∧ ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2417, 19, 23syl2anc 586 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2516, 24mpbid 234 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶)
2611, 25eqtrd 2854 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wrex 3137  ∃!wreu 3138  cin 3933  cmpt 5137  cfv 6348  crio 7105  (class class class)co 7148   + cva 28689   S csh 28697   + cph 28700  0c0h 28704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-hilex 28768  ax-hfvadd 28769  ax-hvcom 28770  ax-hvass 28771  ax-hv0cl 28772  ax-hvaddid 28773  ax-hfvmul 28774  ax-hvmulid 28775  ax-hvmulass 28776  ax-hvdistr1 28777  ax-hvdistr2 28778  ax-hvmul0 28779
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-grpo 28262  df-ablo 28314  df-hvsub 28740  df-sh 28976  df-ch0 29022  df-shs 29077
This theorem is referenced by:  cdj3lem2a  30205  cdj3lem2b  30206  cdj3lem3  30207  cdj3i  30210
  Copyright terms: Public domain W3C validator