HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Visualization version   GIF version

Theorem cdj3lem2 32415
Description: Lemma for cdj3i 32421. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5 𝐴S
2 cdj3lem2.2 . . . . 5 𝐵S
31, 2shsvai 31344 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵))
4 eqeq1 2735 . . . . . . 7 (𝑥 = (𝐶 + 𝐷) → (𝑥 = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝑧 + 𝑤)))
54rexbidv 3156 . . . . . 6 (𝑥 = (𝐶 + 𝐷) → (∃𝑤𝐵 𝑥 = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
65riotabidv 7305 . . . . 5 (𝑥 = (𝐶 + 𝐷) → (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
7 cdj3lem2.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
8 riotaex 7307 . . . . 5 (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) ∈ V
96, 7, 8fvmpt 6929 . . . 4 ((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
103, 9syl 17 . . 3 ((𝐶𝐴𝐷𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
11103adant3 1132 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
12 eqid 2731 . . . . 5 (𝐶 + 𝐷) = (𝐶 + 𝐷)
13 oveq2 7354 . . . . . 6 (𝑤 = 𝐷 → (𝐶 + 𝑤) = (𝐶 + 𝐷))
1413rspceeqv 3595 . . . . 5 ((𝐷𝐵 ∧ (𝐶 + 𝐷) = (𝐶 + 𝐷)) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
1512, 14mpan2 691 . . . 4 (𝐷𝐵 → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
16153ad2ant2 1134 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
17 simp1 1136 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → 𝐶𝐴)
181, 2cdjreui 32412 . . . . 5 (((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
193, 18stoic3 1777 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
20 oveq1 7353 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 + 𝑤) = (𝐶 + 𝑤))
2120eqeq2d 2742 . . . . . 6 (𝑧 = 𝐶 → ((𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2221rexbidv 3156 . . . . 5 (𝑧 = 𝐶 → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2322riota2 7328 . . . 4 ((𝐶𝐴 ∧ ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2417, 19, 23syl2anc 584 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2516, 24mpbid 232 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶)
2611, 25eqtrd 2766 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  ∃!wreu 3344  cin 3896  cmpt 5170  cfv 6481  crio 7302  (class class class)co 7346   + cva 30900   S csh 30908   + cph 30911  0c0h 30915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-grpo 30473  df-ablo 30525  df-hvsub 30951  df-sh 31187  df-ch0 31233  df-shs 31288
This theorem is referenced by:  cdj3lem2a  32416  cdj3lem2b  32417  cdj3lem3  32418  cdj3i  32421
  Copyright terms: Public domain W3C validator