| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32368. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem2 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdj3lem2.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 2 | cdj3lem2.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1, 2 | shsvai 31291 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) |
| 4 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (𝑥 = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) | |
| 5 | 4 | rexbidv 3164 | . . . . . 6 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 6 | 5 | riotabidv 7362 | . . . . 5 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 7 | cdj3lem2.3 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 8 | riotaex 7364 | . . . . 5 ⊢ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6985 | . . . 4 ⊢ ((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 10 | 3, 9 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 12 | eqid 2735 | . . . . 5 ⊢ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷) | |
| 13 | oveq2 7411 | . . . . . 6 ⊢ (𝑤 = 𝐷 → (𝐶 +ℎ 𝑤) = (𝐶 +ℎ 𝐷)) | |
| 14 | 13 | rspceeqv 3624 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷)) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 15 | 12, 14 | mpan2 691 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 16 | 15 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 17 | simp1 1136 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ∈ 𝐴) | |
| 18 | 1, 2 | cdjreui 32359 | . . . . 5 ⊢ (((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 19 | 3, 18 | stoic3 1776 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 20 | oveq1 7410 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧 +ℎ 𝑤) = (𝐶 +ℎ 𝑤)) | |
| 21 | 20 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 22 | 21 | rexbidv 3164 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 23 | 22 | riota2 7385 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 24 | 17, 19, 23 | syl2anc 584 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 25 | 16, 24 | mpbid 232 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶) |
| 26 | 11, 25 | eqtrd 2770 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∃!wreu 3357 ∩ cin 3925 ↦ cmpt 5201 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 +ℎ cva 30847 Sℋ csh 30855 +ℋ cph 30858 0ℋc0h 30862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvmulass 30934 ax-hvdistr1 30935 ax-hvdistr2 30936 ax-hvmul0 30937 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-grpo 30420 df-ablo 30472 df-hvsub 30898 df-sh 31134 df-ch0 31180 df-shs 31235 |
| This theorem is referenced by: cdj3lem2a 32363 cdj3lem2b 32364 cdj3lem3 32365 cdj3i 32368 |
| Copyright terms: Public domain | W3C validator |