HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Visualization version   GIF version

Theorem cdj3lem2 30215
Description: Lemma for cdj3i 30221. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5 𝐴S
2 cdj3lem2.2 . . . . 5 𝐵S
31, 2shsvai 29144 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵))
4 eqeq1 2828 . . . . . . 7 (𝑥 = (𝐶 + 𝐷) → (𝑥 = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝑧 + 𝑤)))
54rexbidv 3300 . . . . . 6 (𝑥 = (𝐶 + 𝐷) → (∃𝑤𝐵 𝑥 = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
65riotabidv 7119 . . . . 5 (𝑥 = (𝐶 + 𝐷) → (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
7 cdj3lem2.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
8 riotaex 7121 . . . . 5 (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) ∈ V
96, 7, 8fvmpt 6771 . . . 4 ((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
103, 9syl 17 . . 3 ((𝐶𝐴𝐷𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
11103adant3 1128 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
12 eqid 2824 . . . . 5 (𝐶 + 𝐷) = (𝐶 + 𝐷)
13 oveq2 7167 . . . . . 6 (𝑤 = 𝐷 → (𝐶 + 𝑤) = (𝐶 + 𝐷))
1413rspceeqv 3641 . . . . 5 ((𝐷𝐵 ∧ (𝐶 + 𝐷) = (𝐶 + 𝐷)) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
1512, 14mpan2 689 . . . 4 (𝐷𝐵 → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
16153ad2ant2 1130 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
17 simp1 1132 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → 𝐶𝐴)
181, 2cdjreui 30212 . . . . 5 (((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
193, 18stoic3 1776 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
20 oveq1 7166 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 + 𝑤) = (𝐶 + 𝑤))
2120eqeq2d 2835 . . . . . 6 (𝑧 = 𝐶 → ((𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2221rexbidv 3300 . . . . 5 (𝑧 = 𝐶 → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2322riota2 7142 . . . 4 ((𝐶𝐴 ∧ ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2417, 19, 23syl2anc 586 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2516, 24mpbid 234 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶)
2611, 25eqtrd 2859 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142  ∃!wreu 3143  cin 3938  cmpt 5149  cfv 6358  crio 7116  (class class class)co 7159   + cva 28700   S csh 28708   + cph 28711  0c0h 28715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-hilex 28779  ax-hfvadd 28780  ax-hvcom 28781  ax-hvass 28782  ax-hv0cl 28783  ax-hvaddid 28784  ax-hfvmul 28785  ax-hvmulid 28786  ax-hvmulass 28787  ax-hvdistr1 28788  ax-hvdistr2 28789  ax-hvmul0 28790
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-grpo 28273  df-ablo 28325  df-hvsub 28751  df-sh 28987  df-ch0 29033  df-shs 29088
This theorem is referenced by:  cdj3lem2a  30216  cdj3lem2b  30217  cdj3lem3  30218  cdj3i  30221
  Copyright terms: Public domain W3C validator