| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32427. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem2 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdj3lem2.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 2 | cdj3lem2.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1, 2 | shsvai 31350 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) |
| 4 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (𝑥 = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) | |
| 5 | 4 | rexbidv 3165 | . . . . . 6 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 6 | 5 | riotabidv 7369 | . . . . 5 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 7 | cdj3lem2.3 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 8 | riotaex 7371 | . . . . 5 ⊢ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6991 | . . . 4 ⊢ ((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 10 | 3, 9 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 12 | eqid 2736 | . . . . 5 ⊢ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷) | |
| 13 | oveq2 7418 | . . . . . 6 ⊢ (𝑤 = 𝐷 → (𝐶 +ℎ 𝑤) = (𝐶 +ℎ 𝐷)) | |
| 14 | 13 | rspceeqv 3629 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷)) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 15 | 12, 14 | mpan2 691 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 16 | 15 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 17 | simp1 1136 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ∈ 𝐴) | |
| 18 | 1, 2 | cdjreui 32418 | . . . . 5 ⊢ (((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 19 | 3, 18 | stoic3 1776 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 20 | oveq1 7417 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧 +ℎ 𝑤) = (𝐶 +ℎ 𝑤)) | |
| 21 | 20 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 22 | 21 | rexbidv 3165 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 23 | 22 | riota2 7392 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 24 | 17, 19, 23 | syl2anc 584 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 25 | 16, 24 | mpbid 232 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶) |
| 26 | 11, 25 | eqtrd 2771 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∃!wreu 3362 ∩ cin 3930 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 +ℎ cva 30906 Sℋ csh 30914 +ℋ cph 30917 0ℋc0h 30921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-grpo 30479 df-ablo 30531 df-hvsub 30957 df-sh 31193 df-ch0 31239 df-shs 31294 |
| This theorem is referenced by: cdj3lem2a 32422 cdj3lem2b 32423 cdj3lem3 32424 cdj3i 32427 |
| Copyright terms: Public domain | W3C validator |