HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Visualization version   GIF version

Theorem cdj3lem2 30218
Description: Lemma for cdj3i 30224. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5 𝐴S
2 cdj3lem2.2 . . . . 5 𝐵S
31, 2shsvai 29147 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵))
4 eqeq1 2802 . . . . . . 7 (𝑥 = (𝐶 + 𝐷) → (𝑥 = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝑧 + 𝑤)))
54rexbidv 3256 . . . . . 6 (𝑥 = (𝐶 + 𝐷) → (∃𝑤𝐵 𝑥 = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
65riotabidv 7095 . . . . 5 (𝑥 = (𝐶 + 𝐷) → (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
7 cdj3lem2.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
8 riotaex 7097 . . . . 5 (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) ∈ V
96, 7, 8fvmpt 6745 . . . 4 ((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
103, 9syl 17 . . 3 ((𝐶𝐴𝐷𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
11103adant3 1129 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
12 eqid 2798 . . . . 5 (𝐶 + 𝐷) = (𝐶 + 𝐷)
13 oveq2 7143 . . . . . 6 (𝑤 = 𝐷 → (𝐶 + 𝑤) = (𝐶 + 𝐷))
1413rspceeqv 3586 . . . . 5 ((𝐷𝐵 ∧ (𝐶 + 𝐷) = (𝐶 + 𝐷)) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
1512, 14mpan2 690 . . . 4 (𝐷𝐵 → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
16153ad2ant2 1131 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
17 simp1 1133 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → 𝐶𝐴)
181, 2cdjreui 30215 . . . . 5 (((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
193, 18stoic3 1778 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
20 oveq1 7142 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 + 𝑤) = (𝐶 + 𝑤))
2120eqeq2d 2809 . . . . . 6 (𝑧 = 𝐶 → ((𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2221rexbidv 3256 . . . . 5 (𝑧 = 𝐶 → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2322riota2 7118 . . . 4 ((𝐶𝐴 ∧ ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2417, 19, 23syl2anc 587 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2516, 24mpbid 235 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶)
2611, 25eqtrd 2833 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  ∃!wreu 3108  cin 3880  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135   + cva 28703   S csh 28711   + cph 28714  0c0h 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-sh 28990  df-ch0 29036  df-shs 29091
This theorem is referenced by:  cdj3lem2a  30219  cdj3lem2b  30220  cdj3lem3  30221  cdj3i  30224
  Copyright terms: Public domain W3C validator