Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cdj3lem2 | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 30704. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem2 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | cdj3lem2.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shsvai 29627 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) |
4 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (𝑥 = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) | |
5 | 4 | rexbidv 3225 | . . . . . 6 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
6 | 5 | riotabidv 7214 | . . . . 5 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
7 | cdj3lem2.3 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
8 | riotaex 7216 | . . . . 5 ⊢ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6857 | . . . 4 ⊢ ((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
10 | 3, 9 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
11 | 10 | 3adant3 1130 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
12 | eqid 2738 | . . . . 5 ⊢ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷) | |
13 | oveq2 7263 | . . . . . 6 ⊢ (𝑤 = 𝐷 → (𝐶 +ℎ 𝑤) = (𝐶 +ℎ 𝐷)) | |
14 | 13 | rspceeqv 3567 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷)) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
15 | 12, 14 | mpan2 687 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
16 | 15 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
17 | simp1 1134 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ∈ 𝐴) | |
18 | 1, 2 | cdjreui 30695 | . . . . 5 ⊢ (((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
19 | 3, 18 | stoic3 1780 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
20 | oveq1 7262 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧 +ℎ 𝑤) = (𝐶 +ℎ 𝑤)) | |
21 | 20 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
22 | 21 | rexbidv 3225 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
23 | 22 | riota2 7238 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
24 | 17, 19, 23 | syl2anc 583 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
25 | 16, 24 | mpbid 231 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶) |
26 | 11, 25 | eqtrd 2778 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∃!wreu 3065 ∩ cin 3882 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 +ℎ cva 29183 Sℋ csh 29191 +ℋ cph 29194 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-grpo 28756 df-ablo 28808 df-hvsub 29234 df-sh 29470 df-ch0 29516 df-shs 29571 |
This theorem is referenced by: cdj3lem2a 30699 cdj3lem2b 30700 cdj3lem3 30701 cdj3i 30704 |
Copyright terms: Public domain | W3C validator |