| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cdj3lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cdj3i 32343. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
| cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
| cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
| Ref | Expression |
|---|---|
| cdj3lem2 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdj3lem2.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 2 | cdj3lem2.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1, 2 | shsvai 31266 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) |
| 4 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (𝑥 = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) | |
| 5 | 4 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 6 | 5 | riotabidv 7328 | . . . . 5 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 7 | cdj3lem2.3 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
| 8 | riotaex 7330 | . . . . 5 ⊢ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6950 | . . . 4 ⊢ ((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 10 | 3, 9 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 11 | 10 | 3adant3 1132 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
| 12 | eqid 2729 | . . . . 5 ⊢ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷) | |
| 13 | oveq2 7377 | . . . . . 6 ⊢ (𝑤 = 𝐷 → (𝐶 +ℎ 𝑤) = (𝐶 +ℎ 𝐷)) | |
| 14 | 13 | rspceeqv 3608 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷)) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 15 | 12, 14 | mpan2 691 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 16 | 15 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
| 17 | simp1 1136 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ∈ 𝐴) | |
| 18 | 1, 2 | cdjreui 32334 | . . . . 5 ⊢ (((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 19 | 3, 18 | stoic3 1776 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
| 20 | oveq1 7376 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧 +ℎ 𝑤) = (𝐶 +ℎ 𝑤)) | |
| 21 | 20 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 22 | 21 | rexbidv 3157 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
| 23 | 22 | riota2 7351 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 24 | 17, 19, 23 | syl2anc 584 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
| 25 | 16, 24 | mpbid 232 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶) |
| 26 | 11, 25 | eqtrd 2764 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∃!wreu 3349 ∩ cin 3910 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 +ℎ cva 30822 Sℋ csh 30830 +ℋ cph 30833 0ℋc0h 30837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvmulass 30909 ax-hvdistr1 30910 ax-hvdistr2 30911 ax-hvmul0 30912 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-grpo 30395 df-ablo 30447 df-hvsub 30873 df-sh 31109 df-ch0 31155 df-shs 31210 |
| This theorem is referenced by: cdj3lem2a 32338 cdj3lem2b 32339 cdj3lem3 32340 cdj3i 32343 |
| Copyright terms: Public domain | W3C validator |