HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem2 Structured version   Visualization version   GIF version

Theorem cdj3lem2 30698
Description: Lemma for cdj3i 30704. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤   𝑥,𝐷,𝑧,𝑤
Allowed substitution hints:   𝑆(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem2
StepHypRef Expression
1 cdj3lem2.1 . . . . 5 𝐴S
2 cdj3lem2.2 . . . . 5 𝐵S
31, 2shsvai 29627 . . . 4 ((𝐶𝐴𝐷𝐵) → (𝐶 + 𝐷) ∈ (𝐴 + 𝐵))
4 eqeq1 2742 . . . . . . 7 (𝑥 = (𝐶 + 𝐷) → (𝑥 = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝑧 + 𝑤)))
54rexbidv 3225 . . . . . 6 (𝑥 = (𝐶 + 𝐷) → (∃𝑤𝐵 𝑥 = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
65riotabidv 7214 . . . . 5 (𝑥 = (𝐶 + 𝐷) → (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
7 cdj3lem2.3 . . . . 5 𝑆 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤)))
8 riotaex 7216 . . . . 5 (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) ∈ V
96, 7, 8fvmpt 6857 . . . 4 ((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
103, 9syl 17 . . 3 ((𝐶𝐴𝐷𝐵) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
11103adant3 1130 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)))
12 eqid 2738 . . . . 5 (𝐶 + 𝐷) = (𝐶 + 𝐷)
13 oveq2 7263 . . . . . 6 (𝑤 = 𝐷 → (𝐶 + 𝑤) = (𝐶 + 𝐷))
1413rspceeqv 3567 . . . . 5 ((𝐷𝐵 ∧ (𝐶 + 𝐷) = (𝐶 + 𝐷)) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
1512, 14mpan2 687 . . . 4 (𝐷𝐵 → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
16153ad2ant2 1132 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤))
17 simp1 1134 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → 𝐶𝐴)
181, 2cdjreui 30695 . . . . 5 (((𝐶 + 𝐷) ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
193, 18stoic3 1780 . . . 4 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤))
20 oveq1 7262 . . . . . . 7 (𝑧 = 𝐶 → (𝑧 + 𝑤) = (𝐶 + 𝑤))
2120eqeq2d 2749 . . . . . 6 (𝑧 = 𝐶 → ((𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2221rexbidv 3225 . . . . 5 (𝑧 = 𝐶 → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤) ↔ ∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤)))
2322riota2 7238 . . . 4 ((𝐶𝐴 ∧ ∃!𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2417, 19, 23syl2anc 583 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (∃𝑤𝐵 (𝐶 + 𝐷) = (𝐶 + 𝑤) ↔ (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶))
2516, 24mpbid 231 . 2 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑧𝐴𝑤𝐵 (𝐶 + 𝐷) = (𝑧 + 𝑤)) = 𝐶)
2611, 25eqtrd 2778 1 ((𝐶𝐴𝐷𝐵 ∧ (𝐴𝐵) = 0) → (𝑆‘(𝐶 + 𝐷)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  ∃!wreu 3065  cin 3882  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255   + cva 29183   S csh 29191   + cph 29194  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-grpo 28756  df-ablo 28808  df-hvsub 29234  df-sh 29470  df-ch0 29516  df-shs 29571
This theorem is referenced by:  cdj3lem2a  30699  cdj3lem2b  30700  cdj3lem3  30701  cdj3i  30704
  Copyright terms: Public domain W3C validator