![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cniccibl | Structured version Visualization version GIF version |
Description: A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
cniccibl | β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β πΉ β πΏ1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccmbl 25083 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β dom vol) | |
2 | cnmbf 25176 | . . 3 β’ (((π΄[,]π΅) β dom vol β§ πΉ β ((π΄[,]π΅)βcnββ)) β πΉ β MblFn) | |
3 | 1, 2 | stoic3 1779 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β πΉ β MblFn) |
4 | simp3 1139 | . . . . 5 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β πΉ β ((π΄[,]π΅)βcnββ)) | |
5 | cncff 24409 | . . . . 5 β’ (πΉ β ((π΄[,]π΅)βcnββ) β πΉ:(π΄[,]π΅)βΆβ) | |
6 | fdm 6727 | . . . . 5 β’ (πΉ:(π΄[,]π΅)βΆβ β dom πΉ = (π΄[,]π΅)) | |
7 | 4, 5, 6 | 3syl 18 | . . . 4 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β dom πΉ = (π΄[,]π΅)) |
8 | 7 | fveq2d 6896 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β (volβdom πΉ) = (volβ(π΄[,]π΅))) |
9 | iccvolcl 25084 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (volβ(π΄[,]π΅)) β β) | |
10 | 9 | 3adant3 1133 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β (volβ(π΄[,]π΅)) β β) |
11 | 8, 10 | eqeltrd 2834 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β (volβdom πΉ) β β) |
12 | cniccbdd 24978 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β βπ₯ β β βπ¦ β (π΄[,]π΅)(absβ(πΉβπ¦)) β€ π₯) | |
13 | 7 | raleqdv 3326 | . . . 4 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β (βπ¦ β dom πΉ(absβ(πΉβπ¦)) β€ π₯ β βπ¦ β (π΄[,]π΅)(absβ(πΉβπ¦)) β€ π₯)) |
14 | 13 | rexbidv 3179 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β (βπ₯ β β βπ¦ β dom πΉ(absβ(πΉβπ¦)) β€ π₯ β βπ₯ β β βπ¦ β (π΄[,]π΅)(absβ(πΉβπ¦)) β€ π₯)) |
15 | 12, 14 | mpbird 257 | . 2 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β βπ₯ β β βπ¦ β dom πΉ(absβ(πΉβπ¦)) β€ π₯) |
16 | bddibl 25357 | . 2 β’ ((πΉ β MblFn β§ (volβdom πΉ) β β β§ βπ₯ β β βπ¦ β dom πΉ(absβ(πΉβπ¦)) β€ π₯) β πΉ β πΏ1) | |
17 | 3, 11, 15, 16 | syl3anc 1372 | 1 β’ ((π΄ β β β§ π΅ β β β§ πΉ β ((π΄[,]π΅)βcnββ)) β πΉ β πΏ1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 βcr 11109 β€ cle 11249 [,]cicc 13327 abscabs 15181 βcnβccncf 24392 volcvol 24980 MblFncmbf 25131 πΏ1cibl 25134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-acn 9937 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cn 22731 df-cnp 22732 df-cmp 22891 df-tx 23066 df-hmeo 23259 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 df-itg2 25138 df-ibl 25139 df-0p 25187 |
This theorem is referenced by: itgsubstlem 25565 iblidicc 33604 fdvposlt 33611 fdvposle 33613 circlemeth 33652 arearect 41964 areaquad 41965 lhe4.4ex1a 43088 itgsin0pilem1 44666 ibliccsinexp 44667 itgsinexplem1 44670 itgsinexp 44671 itgcoscmulx 44685 itgsincmulx 44690 itgioocnicc 44693 iblcncfioo 44694 dirkeritg 44818 fourierdlem95 44917 sqwvfoura 44944 sqwvfourb 44945 etransclem18 44968 |
Copyright terms: Public domain | W3C validator |