MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muldivbinom2 Structured version   Visualization version   GIF version

Theorem muldivbinom2 14228
Description: The square of a binomial with factor divided by a nonzero number. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
muldivbinom2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) / ๐ถ) = (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + ((๐ตโ†‘2) / ๐ถ)))

Proof of Theorem muldivbinom2
StepHypRef Expression
1 simpl 482 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
2 simpr 484 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ต โˆˆ โ„‚)
3 0cnd 11212 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ 0 โˆˆ โ„‚)
41, 2, 33jca 1127 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง 0 โˆˆ โ„‚))
5 mulsubdivbinom2 14227 . . 3 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง 0 โˆˆ โ„‚) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆ’ 0) / ๐ถ) = (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + (((๐ตโ†‘2) โˆ’ 0) / ๐ถ)))
64, 5stoic3 1777 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆ’ 0) / ๐ถ) = (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + (((๐ตโ†‘2) โˆ’ 0) / ๐ถ)))
7 simp3l 1200 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ถ โˆˆ โ„‚)
8 simp1 1135 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ด โˆˆ โ„‚)
97, 8mulcld 11239 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ถ ยท ๐ด) โˆˆ โ„‚)
10 simp2 1136 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ๐ต โˆˆ โ„‚)
119, 10addcld 11238 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ถ ยท ๐ด) + ๐ต) โˆˆ โ„‚)
1211sqcld 14114 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆˆ โ„‚)
1312subid1d 11565 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆ’ 0) = (((๐ถ ยท ๐ด) + ๐ต)โ†‘2))
1413eqcomd 2737 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (((๐ถ ยท ๐ด) + ๐ต)โ†‘2) = ((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆ’ 0))
1514oveq1d 7427 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) / ๐ถ) = (((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) โˆ’ 0) / ๐ถ))
16 sqcl 14088 . . . . . . 7 (๐ต โˆˆ โ„‚ โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
1716subid1d 11565 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ ((๐ตโ†‘2) โˆ’ 0) = (๐ตโ†‘2))
18173ad2ant2 1133 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ตโ†‘2) โˆ’ 0) = (๐ตโ†‘2))
1918eqcomd 2737 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ตโ†‘2) = ((๐ตโ†‘2) โˆ’ 0))
2019oveq1d 7427 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((๐ตโ†‘2) / ๐ถ) = (((๐ตโ†‘2) โˆ’ 0) / ๐ถ))
2120oveq2d 7428 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + ((๐ตโ†‘2) / ๐ถ)) = (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + (((๐ตโ†‘2) โˆ’ 0) / ๐ถ)))
226, 15, 213eqtr4d 2781 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ ((((๐ถ ยท ๐ด) + ๐ต)โ†‘2) / ๐ถ) = (((๐ถ ยท (๐ดโ†‘2)) + (2 ยท (๐ด ยท ๐ต))) + ((๐ตโ†‘2) / ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1086   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939  (class class class)co 7412  โ„‚cc 11112  0cc0 11114   + caddc 11117   ยท cmul 11119   โˆ’ cmin 11449   / cdiv 11876  2c2 12272  โ†‘cexp 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-seq 13972  df-exp 14033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator