MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv2 Structured version   Visualization version   GIF version

Theorem fldiv2 13830
Description: Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.)
Assertion
Ref Expression
fldiv2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))

Proof of Theorem fldiv2
StepHypRef Expression
1 nndivre 12234 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝐴 / 𝑀) ∈ ℝ)
2 fldiv 13829 . . 3 (((𝐴 / 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘((𝐴 / 𝑀) / 𝑁)))
31, 2stoic3 1776 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘((𝐴 / 𝑀) / 𝑁)))
4 recn 11165 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 nncn 12201 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
6 nnne0 12227 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
75, 6jca 511 . . . 4 (𝑀 ∈ ℕ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
8 nncn 12201 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 nnne0 12227 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
108, 9jca 511 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
11 divdiv1 11900 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝐴 / 𝑀) / 𝑁) = (𝐴 / (𝑀 · 𝑁)))
124, 7, 10, 11syl3an 1160 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑀) / 𝑁) = (𝐴 / (𝑀 · 𝑁)))
1312fveq2d 6865 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / 𝑀) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))
143, 13eqtrd 2765 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   / cdiv 11842  cn 12193  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fl 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator