MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv2 Structured version   Visualization version   GIF version

Theorem fldiv2 13320
Description: Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where 𝐴 must be an integer). (Contributed by NM, 9-Nov-2008.)
Assertion
Ref Expression
fldiv2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))

Proof of Theorem fldiv2
StepHypRef Expression
1 nndivre 11757 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝐴 / 𝑀) ∈ ℝ)
2 fldiv 13319 . . 3 (((𝐴 / 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘((𝐴 / 𝑀) / 𝑁)))
31, 2stoic3 1783 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘((𝐴 / 𝑀) / 𝑁)))
4 recn 10705 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 nncn 11724 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
6 nnne0 11750 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
75, 6jca 515 . . . 4 (𝑀 ∈ ℕ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
8 nncn 11724 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
9 nnne0 11750 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
108, 9jca 515 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
11 divdiv1 11429 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝐴 / 𝑀) / 𝑁) = (𝐴 / (𝑀 · 𝑁)))
124, 7, 10, 11syl3an 1161 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑀) / 𝑁) = (𝐴 / (𝑀 · 𝑁)))
1312fveq2d 6678 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / 𝑀) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))
143, 13eqtrd 2773 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘(𝐴 / 𝑀)) / 𝑁)) = (⌊‘(𝐴 / (𝑀 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615   · cmul 10620   / cdiv 11375  cn 11716  cfl 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fl 13253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator