HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmulsubi Structured version   Visualization version   GIF version

Theorem lnopmulsubi 31996
Description: Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopmulsubi ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) − 𝐶)) = ((𝐴 · (𝑇𝐵)) − (𝑇𝐶)))

Proof of Theorem lnopmulsubi
StepHypRef Expression
1 hvmulcl 31033 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopsubi 31994 . . 3 (((𝐴 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) − 𝐶)) = ((𝑇‘(𝐴 · 𝐵)) − (𝑇𝐶)))
41, 3stoic3 1775 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) − 𝐶)) = ((𝑇‘(𝐴 · 𝐵)) − (𝑇𝐶)))
52lnopmuli 31992 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
653adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
76oveq1d 7447 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘(𝐴 · 𝐵)) − (𝑇𝐶)) = ((𝐴 · (𝑇𝐵)) − (𝑇𝐶)))
84, 7eqtrd 2776 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) − 𝐶)) = ((𝐴 · (𝑇𝐵)) − (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cc 11154  chba 30939   · csm 30941   cmv 30945  LinOpclo 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-hilex 31019  ax-hfvadd 31020  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvdistr2 31029  ax-hvmul0 31030
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495  df-neg 11496  df-hvsub 30991  df-lnop 31861
This theorem is referenced by:  lnophmlem2  32037
  Copyright terms: Public domain W3C validator