MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadass Structured version   Visualization version   GIF version

Theorem sadass 15810
Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.)
Assertion
Ref Expression
sadass ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))

Proof of Theorem sadass
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sadcl 15801 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
2 sadcl 15801 . . . . 5 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
31, 2stoic3 1778 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
43sseld 3914 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈ ℕ0))
5 simp1 1133 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → 𝐴 ⊆ ℕ0)
6 sadcl 15801 . . . . . 6 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
763adant1 1127 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
8 sadcl 15801 . . . . 5 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
95, 7, 8syl2anc 587 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
109sseld 3914 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈ ℕ0))
11 simpl1 1188 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
12 simpl2 1189 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0)
13 simpl3 1190 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆ ℕ0)
14 simpr 488 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 11901 . . . . . . . . . 10 1 ∈ ℕ0
1615a1i 11 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 11947 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1811, 12, 13, 17sadasslem 15809 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))
1918eleq2d 2875 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))))
20 elin 3897 . . . . . 6 (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
21 elin 3897 . . . . . 6 (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2219, 20, 213bitr3g 316 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
23 nn0uz 12268 . . . . . . . . 9 0 = (ℤ‘0)
2414, 23eleqtrdi 2900 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
25 eluzfz2 12910 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
2624, 25syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
2714nn0zd 12073 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
28 fzval3 13101 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
2927, 28syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3026, 29eleqtrd 2892 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3130biantrud 535 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3230biantrud 535 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3322, 31, 323bitr4d 314 . . . 4 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3433ex 416 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))))
354, 10, 34pm5.21ndd 384 . 2 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3635eqrdv 2796 1 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cin 3880  wss 3881  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028   sadd csad 15759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-had 1595  df-cad 1609  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-bits 15761  df-sad 15790
This theorem is referenced by:  bitsres  15812
  Copyright terms: Public domain W3C validator