| Step | Hyp | Ref
| Expression |
| 1 | | sadcl 16481 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 sadd 𝐵) ⊆
ℕ0) |
| 2 | | sadcl 16481 |
. . . . 5
⊢ (((𝐴 sadd 𝐵) ⊆ ℕ0 ∧ 𝐶 ⊆ ℕ0)
→ ((𝐴 sadd 𝐵) sadd 𝐶) ⊆
ℕ0) |
| 3 | 1, 2 | stoic3 1776 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆
ℕ0) |
| 4 | 3 | sseld 3957 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈
ℕ0)) |
| 5 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → 𝐴 ⊆
ℕ0) |
| 6 | | sadcl 16481 |
. . . . . 6
⊢ ((𝐵 ⊆ ℕ0
∧ 𝐶 ⊆
ℕ0) → (𝐵 sadd 𝐶) ⊆
ℕ0) |
| 7 | 6 | 3adant1 1130 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆
ℕ0) |
| 8 | | sadcl 16481 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ (𝐵 sadd 𝐶) ⊆ ℕ0)
→ (𝐴 sadd (𝐵 sadd 𝐶)) ⊆
ℕ0) |
| 9 | 5, 7, 8 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆
ℕ0) |
| 10 | 9 | sseld 3957 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈
ℕ0)) |
| 11 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆
ℕ0) |
| 12 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆
ℕ0) |
| 13 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆
ℕ0) |
| 14 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 15 | | 1nn0 12517 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
| 16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℕ0) |
| 17 | 14, 16 | nn0addcld 12566 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
| 18 | 11, 12, 13, 17 | sadasslem 16489 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))) |
| 19 | 18 | eleq2d 2820 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))) |
| 20 | | elin 3942 |
. . . . . 6
⊢ (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) |
| 21 | | elin 3942 |
. . . . . 6
⊢ (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) |
| 22 | 19, 20, 21 | 3bitr3g 313 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
| 23 | | nn0uz 12894 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 24 | 14, 23 | eleqtrdi 2844 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
| 25 | | eluzfz2 13549 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ (0...𝑘)) |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘)) |
| 27 | 14 | nn0zd 12614 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
| 28 | | fzval3 13750 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ →
(0...𝑘) = (0..^(𝑘 + 1))) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) = (0..^(𝑘 + 1))) |
| 30 | 26, 29 | eleqtrd 2836 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1))) |
| 31 | 30 | biantrud 531 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
| 32 | 30 | biantrud 531 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
| 33 | 22, 31, 32 | 3bitr4d 311 |
. . . 4
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))) |
| 34 | 33 | ex 412 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))) |
| 35 | 4, 10, 34 | pm5.21ndd 379 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))) |
| 36 | 35 | eqrdv 2733 |
1
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶))) |