MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadass Structured version   Visualization version   GIF version

Theorem sadass 16356
Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.)
Assertion
Ref Expression
sadass ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))

Proof of Theorem sadass
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sadcl 16347 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
2 sadcl 16347 . . . . 5 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
31, 2stoic3 1779 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
43sseld 3944 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈ ℕ0))
5 simp1 1137 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → 𝐴 ⊆ ℕ0)
6 sadcl 16347 . . . . . 6 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
763adant1 1131 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
8 sadcl 16347 . . . . 5 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
95, 7, 8syl2anc 585 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
109sseld 3944 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈ ℕ0))
11 simpl1 1192 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
12 simpl2 1193 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0)
13 simpl3 1194 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆ ℕ0)
14 simpr 486 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 12434 . . . . . . . . . 10 1 ∈ ℕ0
1615a1i 11 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 12482 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1811, 12, 13, 17sadasslem 16355 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))
1918eleq2d 2820 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))))
20 elin 3927 . . . . . 6 (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
21 elin 3927 . . . . . 6 (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2219, 20, 213bitr3g 313 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
23 nn0uz 12810 . . . . . . . . 9 0 = (ℤ‘0)
2414, 23eleqtrdi 2844 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
25 eluzfz2 13455 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
2624, 25syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
2714nn0zd 12530 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
28 fzval3 13647 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
2927, 28syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3026, 29eleqtrd 2836 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3130biantrud 533 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3230biantrud 533 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3322, 31, 323bitr4d 311 . . . 4 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3433ex 414 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))))
354, 10, 34pm5.21ndd 381 . 2 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3635eqrdv 2731 1 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3910  wss 3911  cfv 6497  (class class class)co 7358  0cc0 11056  1c1 11057   + caddc 11059  0cn0 12418  cz 12504  cuz 12768  ...cfz 13430  ..^cfzo 13573   sadd csad 16305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-had 1596  df-cad 1609  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-disj 5072  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8651  df-map 8770  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-oi 9451  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-fzo 13574  df-fl 13703  df-mod 13781  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-sum 15577  df-dvds 16142  df-bits 16307  df-sad 16336
This theorem is referenced by:  bitsres  16358
  Copyright terms: Public domain W3C validator