Step | Hyp | Ref
| Expression |
1 | | sadcl 16169 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 sadd 𝐵) ⊆
ℕ0) |
2 | | sadcl 16169 |
. . . . 5
⊢ (((𝐴 sadd 𝐵) ⊆ ℕ0 ∧ 𝐶 ⊆ ℕ0)
→ ((𝐴 sadd 𝐵) sadd 𝐶) ⊆
ℕ0) |
3 | 1, 2 | stoic3 1779 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆
ℕ0) |
4 | 3 | sseld 3920 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈
ℕ0)) |
5 | | simp1 1135 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → 𝐴 ⊆
ℕ0) |
6 | | sadcl 16169 |
. . . . . 6
⊢ ((𝐵 ⊆ ℕ0
∧ 𝐶 ⊆
ℕ0) → (𝐵 sadd 𝐶) ⊆
ℕ0) |
7 | 6 | 3adant1 1129 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆
ℕ0) |
8 | | sadcl 16169 |
. . . . 5
⊢ ((𝐴 ⊆ ℕ0
∧ (𝐵 sadd 𝐶) ⊆ ℕ0)
→ (𝐴 sadd (𝐵 sadd 𝐶)) ⊆
ℕ0) |
9 | 5, 7, 8 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆
ℕ0) |
10 | 9 | sseld 3920 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈
ℕ0)) |
11 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆
ℕ0) |
12 | | simpl2 1191 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆
ℕ0) |
13 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆
ℕ0) |
14 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
15 | | 1nn0 12249 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℕ0) |
17 | 14, 16 | nn0addcld 12297 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
18 | 11, 12, 13, 17 | sadasslem 16177 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))) |
19 | 18 | eleq2d 2824 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))) |
20 | | elin 3903 |
. . . . . 6
⊢ (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) |
21 | | elin 3903 |
. . . . . 6
⊢ (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) |
22 | 19, 20, 21 | 3bitr3g 313 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
23 | | nn0uz 12620 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
24 | 14, 23 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
25 | | eluzfz2 13264 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ (0...𝑘)) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘)) |
27 | 14 | nn0zd 12424 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
28 | | fzval3 13456 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ →
(0...𝑘) = (0..^(𝑘 + 1))) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) = (0..^(𝑘 + 1))) |
30 | 26, 29 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1))) |
31 | 30 | biantrud 532 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
32 | 30 | biantrud 532 |
. . . . 5
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
33 | 22, 31, 32 | 3bitr4d 311 |
. . . 4
⊢ (((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))) |
34 | 33 | ex 413 |
. . 3
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))) |
35 | 4, 10, 34 | pm5.21ndd 381 |
. 2
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))) |
36 | 35 | eqrdv 2736 |
1
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0 ∧ 𝐶
⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶))) |