MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadass Structured version   Visualization version   GIF version

Theorem sadass 16412
Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.)
Assertion
Ref Expression
sadass ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))

Proof of Theorem sadass
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 sadcl 16403 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
2 sadcl 16403 . . . . 5 (((𝐴 sadd 𝐵) ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
31, 2stoic3 1779 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) ⊆ ℕ0)
43sseld 3982 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) → 𝑘 ∈ ℕ0))
5 simp1 1137 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → 𝐴 ⊆ ℕ0)
6 sadcl 16403 . . . . . 6 ((𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
763adant1 1131 . . . . 5 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐵 sadd 𝐶) ⊆ ℕ0)
8 sadcl 16403 . . . . 5 ((𝐴 ⊆ ℕ0 ∧ (𝐵 sadd 𝐶) ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
95, 7, 8syl2anc 585 . . . 4 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝐴 sadd (𝐵 sadd 𝐶)) ⊆ ℕ0)
109sseld 3982 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) → 𝑘 ∈ ℕ0))
11 simpl1 1192 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆ ℕ0)
12 simpl2 1193 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆ ℕ0)
13 simpl3 1194 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ⊆ ℕ0)
14 simpr 486 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 12488 . . . . . . . . . 10 1 ∈ ℕ0
1615a1i 11 . . . . . . . . 9 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 12536 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1811, 12, 13, 17sadasslem 16411 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))))
1918eleq2d 2820 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1)))))
20 elin 3965 . . . . . 6 (𝑘 ∈ (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
21 elin 3965 . . . . . 6 (𝑘 ∈ ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2219, 20, 213bitr3g 313 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
23 nn0uz 12864 . . . . . . . . 9 0 = (ℤ‘0)
2414, 23eleqtrdi 2844 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
25 eluzfz2 13509 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
2624, 25syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
2714nn0zd 12584 . . . . . . . 8 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
28 fzval3 13701 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
2927, 28syl 17 . . . . . . 7 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3026, 29eleqtrd 2836 . . . . . 6 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3130biantrud 533 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3230biantrud 533 . . . . 5 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ↔ (𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3322, 31, 323bitr4d 311 . . . 4 (((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3433ex 414 . . 3 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶)))))
354, 10, 34pm5.21ndd 381 . 2 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → (𝑘 ∈ ((𝐴 sadd 𝐵) sadd 𝐶) ↔ 𝑘 ∈ (𝐴 sadd (𝐵 sadd 𝐶))))
3635eqrdv 2731 1 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3948  wss 3949  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113  0cn0 12472  cz 12558  cuz 12822  ...cfz 13484  ..^cfzo 13627   sadd csad 16361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-had 1596  df-cad 1609  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-dvds 16198  df-bits 16363  df-sad 16392
This theorem is referenced by:  bitsres  16414
  Copyright terms: Public domain W3C validator