Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem7 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16035. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem7 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | simp3 1138 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
3 | 2 | nnzd 12531 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ) |
4 | eqidd 2738 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) = ((𝐹‘𝐴)‘𝑘)) | |
5 | eluznn 12764 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) | |
6 | 2, 5 | sylan 581 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) |
7 | sstr 3944 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ) | |
8 | 7 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ) |
9 | rpnnen2.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
10 | 9 | rpnnen2lem2 16024 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝐴):ℕ⟶ℝ) |
12 | 11 | ffvelcdmda 7022 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
13 | 6, 12 | syldan 592 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
14 | eqidd 2738 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐵)‘𝑘) = ((𝐹‘𝐵)‘𝑘)) | |
15 | 9 | rpnnen2lem2 16024 | . . . . 5 ⊢ (𝐵 ⊆ ℕ → (𝐹‘𝐵):ℕ⟶ℝ) |
16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝐵):ℕ⟶ℝ) |
17 | 16 | ffvelcdmda 7022 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
18 | 6, 17 | syldan 592 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
19 | 9 | rpnnen2lem4 16026 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
20 | 19 | simprd 497 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
21 | 20 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
22 | 21 | 3adantl3 1168 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
23 | 6, 22 | syldan 592 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
24 | 9 | rpnnen2lem5 16027 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
25 | 7, 24 | stoic3 1778 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
26 | 9 | rpnnen2lem5 16027 | . . 3 ⊢ ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐵)) ∈ dom ⇝ ) |
27 | 26 | 3adant1 1130 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐵)) ∈ dom ⇝ ) |
28 | 1, 3, 4, 13, 14, 18, 23, 25, 27 | isumle 15656 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3902 ifcif 4478 𝒫 cpw 4552 class class class wbr 5097 ↦ cmpt 5180 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 0cc0 10977 1c1 10978 + caddc 10980 ≤ cle 11116 / cdiv 11738 ℕcn 12079 3c3 12135 ℤ≥cuz 12688 seqcseq 13827 ↑cexp 13888 ⇝ cli 15293 Σcsu 15497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-sup 9304 df-inf 9305 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-rp 12837 df-ico 13191 df-fz 13346 df-fzo 13489 df-fl 13618 df-seq 13828 df-exp 13889 df-hash 14151 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 |
This theorem is referenced by: rpnnen2lem11 16033 rpnnen2lem12 16034 |
Copyright terms: Public domain | W3C validator |