MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem7 Structured version   Visualization version   GIF version

Theorem rpnnen2lem7 15929
Description: Lemma for rpnnen2 15935. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem7 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem7
StepHypRef Expression
1 eqid 2738 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simp3 1137 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
32nnzd 12425 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
4 eqidd 2739 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐴)‘𝑘))
5 eluznn 12658 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
62, 5sylan 580 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
7 sstr 3929 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
873adant3 1131 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ)
9 rpnnen2.1 . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
109rpnnen2lem2 15924 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
118, 10syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐴):ℕ⟶ℝ)
1211ffvelrnda 6961 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
136, 12syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
14 eqidd 2739 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) = ((𝐹𝐵)‘𝑘))
159rpnnen2lem2 15924 . . . . 5 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
16153ad2ant2 1133 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐵):ℕ⟶ℝ)
1716ffvelrnda 6961 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
186, 17syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
199rpnnen2lem4 15926 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
2019simprd 496 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
21203expa 1117 . . . 4 (((𝐴𝐵𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
22213adantl3 1167 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
236, 22syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
249rpnnen2lem5 15927 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
257, 24stoic3 1779 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
269rpnnen2lem5 15927 . . 3 ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
27263adant1 1129 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
281, 3, 4, 13, 14, 18, 23, 25, 27isumle 15556 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  cle 11010   / cdiv 11632  cn 11973  3c3 12029  cuz 12582  seqcseq 13721  cexp 13782  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  rpnnen2lem11  15933  rpnnen2lem12  15934
  Copyright terms: Public domain W3C validator