![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem7 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15437. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem7 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | simp3 1118 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
3 | 2 | nnzd 11897 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ) |
4 | eqidd 2773 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) = ((𝐹‘𝐴)‘𝑘)) | |
5 | eluznn 12130 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) | |
6 | 2, 5 | sylan 572 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) |
7 | sstr 3860 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ) | |
8 | 7 | 3adant3 1112 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ) |
9 | rpnnen2.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
10 | 9 | rpnnen2lem2 15426 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝐴):ℕ⟶ℝ) |
12 | 11 | ffvelrnda 6674 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
13 | 6, 12 | syldan 582 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
14 | eqidd 2773 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐵)‘𝑘) = ((𝐹‘𝐵)‘𝑘)) | |
15 | 9 | rpnnen2lem2 15426 | . . . . 5 ⊢ (𝐵 ⊆ ℕ → (𝐹‘𝐵):ℕ⟶ℝ) |
16 | 15 | 3ad2ant2 1114 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹‘𝐵):ℕ⟶ℝ) |
17 | 16 | ffvelrnda 6674 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
18 | 6, 17 | syldan 582 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐵)‘𝑘) ∈ ℝ) |
19 | 9 | rpnnen2lem4 15428 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
20 | 19 | simprd 488 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
21 | 20 | 3expa 1098 | . . . 4 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
22 | 21 | 3adantl3 1148 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
23 | 6, 22 | syldan 582 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
24 | 9 | rpnnen2lem5 15429 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
25 | 7, 24 | stoic3 1739 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
26 | 9 | rpnnen2lem5 15429 | . . 3 ⊢ ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐵)) ∈ dom ⇝ ) |
27 | 26 | 3adant1 1110 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐵)) ∈ dom ⇝ ) |
28 | 1, 3, 4, 13, 14, 18, 23, 25, 27 | isumle 15057 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ≥‘𝑀)((𝐹‘𝐵)‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 ifcif 4344 𝒫 cpw 4416 class class class wbr 4925 ↦ cmpt 5004 dom cdm 5403 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 ℝcr 10332 0cc0 10333 1c1 10334 + caddc 10336 ≤ cle 10473 / cdiv 11096 ℕcn 11437 3c3 11494 ℤ≥cuz 12056 seqcseq 13182 ↑cexp 13242 ⇝ cli 14700 Σcsu 14901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-inf2 8896 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-pm 8207 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-sup 8699 df-inf 8700 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-n0 11706 df-z 11792 df-uz 12057 df-rp 12203 df-ico 12558 df-fz 12707 df-fzo 12848 df-fl 12975 df-seq 13183 df-exp 13243 df-hash 13504 df-cj 14317 df-re 14318 df-im 14319 df-sqrt 14453 df-abs 14454 df-limsup 14687 df-clim 14704 df-rlim 14705 df-sum 14902 |
This theorem is referenced by: rpnnen2lem11 15435 rpnnen2lem12 15436 |
Copyright terms: Public domain | W3C validator |