MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem7 Structured version   Visualization version   GIF version

Theorem rpnnen2lem7 16129
Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem7 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem7
StepHypRef Expression
1 eqid 2729 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simp3 1138 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
32nnzd 12498 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
4 eqidd 2730 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐴)‘𝑘))
5 eluznn 12819 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
62, 5sylan 580 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
7 sstr 3944 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
873adant3 1132 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ)
9 rpnnen2.1 . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
109rpnnen2lem2 16124 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
118, 10syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐴):ℕ⟶ℝ)
1211ffvelcdmda 7018 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
136, 12syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
14 eqidd 2730 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) = ((𝐹𝐵)‘𝑘))
159rpnnen2lem2 16124 . . . . 5 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
16153ad2ant2 1134 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐵):ℕ⟶ℝ)
1716ffvelcdmda 7018 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
186, 17syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
199rpnnen2lem4 16126 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
2019simprd 495 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
21203expa 1118 . . . 4 (((𝐴𝐵𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
22213adantl3 1169 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
236, 22syldan 591 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
249rpnnen2lem5 16127 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
257, 24stoic3 1776 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
269rpnnen2lem5 16127 . . 3 ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
27263adant1 1130 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
281, 3, 4, 13, 14, 18, 23, 25, 27isumle 15751 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  ifcif 4476  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  cle 11150   / cdiv 11777  cn 12128  3c3 12184  cuz 12735  seqcseq 13908  cexp 13968  cli 15391  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  rpnnen2lem11  16133  rpnnen2lem12  16134
  Copyright terms: Public domain W3C validator