MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem7 Structured version   Visualization version   GIF version

Theorem rpnnen2lem7 16268
Description: Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem7 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem7
StepHypRef Expression
1 eqid 2740 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simp3 1138 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
32nnzd 12666 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
4 eqidd 2741 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐴)‘𝑘))
5 eluznn 12983 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
62, 5sylan 579 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
7 sstr 4017 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
873adant3 1132 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ)
9 rpnnen2.1 . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
109rpnnen2lem2 16263 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
118, 10syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐴):ℕ⟶ℝ)
1211ffvelcdmda 7118 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
136, 12syldan 590 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
14 eqidd 2741 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) = ((𝐹𝐵)‘𝑘))
159rpnnen2lem2 16263 . . . . 5 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
16153ad2ant2 1134 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐵):ℕ⟶ℝ)
1716ffvelcdmda 7118 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
186, 17syldan 590 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
199rpnnen2lem4 16265 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
2019simprd 495 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
21203expa 1118 . . . 4 (((𝐴𝐵𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
22213adantl3 1168 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
236, 22syldan 590 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
249rpnnen2lem5 16266 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
257, 24stoic3 1774 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
269rpnnen2lem5 16266 . . 3 ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
27263adant1 1130 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
281, 3, 4, 13, 14, 18, 23, 25, 27isumle 15892 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325   / cdiv 11947  cn 12293  3c3 12349  cuz 12903  seqcseq 14052  cexp 14112  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  rpnnen2lem11  16272  rpnnen2lem12  16273
  Copyright terms: Public domain W3C validator