MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem7 Structured version   Visualization version   GIF version

Theorem rpnnen2lem7 16029
Description: Lemma for rpnnen2 16035. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem7 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem7
StepHypRef Expression
1 eqid 2737 . 2 (ℤ𝑀) = (ℤ𝑀)
2 simp3 1138 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
32nnzd 12531 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
4 eqidd 2738 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐴)‘𝑘))
5 eluznn 12764 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
62, 5sylan 581 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
7 sstr 3944 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
873adant3 1132 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝐴 ⊆ ℕ)
9 rpnnen2.1 . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
109rpnnen2lem2 16024 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
118, 10syl 17 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐴):ℕ⟶ℝ)
1211ffvelcdmda 7022 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
136, 12syldan 592 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
14 eqidd 2738 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) = ((𝐹𝐵)‘𝑘))
159rpnnen2lem2 16024 . . . . 5 (𝐵 ⊆ ℕ → (𝐹𝐵):ℕ⟶ℝ)
16153ad2ant2 1134 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐵):ℕ⟶ℝ)
1716ffvelcdmda 7022 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
186, 17syldan 592 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐵)‘𝑘) ∈ ℝ)
199rpnnen2lem4 16026 . . . . . 6 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
2019simprd 497 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
21203expa 1118 . . . 4 (((𝐴𝐵𝐵 ⊆ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
22213adantl3 1168 . . 3 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
236, 22syldan 592 . 2 (((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
249rpnnen2lem5 16027 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
257, 24stoic3 1778 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
269rpnnen2lem5 16027 . . 3 ((𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
27263adant1 1130 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐵)) ∈ dom ⇝ )
281, 3, 4, 13, 14, 18, 23, 25, 27isumle 15656 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐵)‘𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wss 3902  ifcif 4478  𝒫 cpw 4552   class class class wbr 5097  cmpt 5180  dom cdm 5625  wf 6480  cfv 6484  (class class class)co 7342  cr 10976  0cc0 10977  1c1 10978   + caddc 10980  cle 11116   / cdiv 11738  cn 12079  3c3 12135  cuz 12688  seqcseq 13827  cexp 13888  cli 15293  Σcsu 15497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-pm 8694  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-ico 13191  df-fz 13346  df-fzo 13489  df-fl 13618  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-limsup 15280  df-clim 15297  df-rlim 15298  df-sum 15498
This theorem is referenced by:  rpnnen2lem11  16033  rpnnen2lem12  16034
  Copyright terms: Public domain W3C validator