Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignnld Structured version   Visualization version   GIF version

Theorem dignnld 43185
Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignnld ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignnld
StepHypRef Expression
1 eluz2nn 11967 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
213ad2ant1 1164 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℕ)
3 nnrp 12084 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
43anim2i 611 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+))
5 relogbzcl 24853 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
64, 5syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
7 nnre 11319 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnge1 11341 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
97, 8jca 508 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
10 1re 10327 . . . . . . . . . 10 1 ∈ ℝ
11 elicopnf 12516 . . . . . . . . . 10 (1 ∈ ℝ → (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
139, 12sylibr 226 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1[,)+∞))
1413anim2i 611 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)))
15 rege1logbzge0 43141 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑁))
1614, 15syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵 logb 𝑁))
176, 16jca 508 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)))
18 flge0nn0 12873 . . . . 5 (((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)) → (⌊‘(𝐵 logb 𝑁)) ∈ ℕ0)
19 peano2nn0 11619 . . . . 5 ((⌊‘(𝐵 logb 𝑁)) ∈ ℕ0 → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
2017, 18, 193syl 18 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
21 eluznn0 11999 . . . 4 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
2220, 21stoic3 1872 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
23 nnnn0 11585 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
24 nn0rp0 12527 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2523, 24syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
26253ad2ant2 1165 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ (0[,)+∞))
27 nn0digval 43182 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
282, 22, 26, 27syl3anc 1491 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
2973ad2ant2 1165 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
30 eluzelre 11938 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
31303ad2ant1 1164 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
32 eluz2n0 11969 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
33323ad2ant1 1164 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
34 eluzelz 11937 . . . . . . . 8 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
35343ad2ant3 1166 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
3631, 33, 35reexpclzd 13287 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ)
37 eluzelcn 11939 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
38373ad2ant1 1164 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
3938, 33, 35expne0d 13265 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ≠ 0)
4029, 36, 39redivcld 11144 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ ℝ)
41 nn0ge0 11604 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
4223, 41syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
43423ad2ant2 1165 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝑁)
441nngt0d 11359 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
45443ad2ant1 1164 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < 𝐵)
46 expgt0 13144 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝐾))
4731, 35, 45, 46syl3anc 1491 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < (𝐵𝐾))
48 ge0div 11181 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ ∧ 0 < (𝐵𝐾)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
4929, 36, 47, 48syl3anc 1491 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
5043, 49mpbid 224 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ (𝑁 / (𝐵𝐾)))
51 dignn0ldlem 43184 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
521nnrpd 12112 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
53 rpexpcl 13130 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝐾 ∈ ℤ) → (𝐵𝐾) ∈ ℝ+)
5452, 34, 53syl2an 590 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
55543adant2 1162 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
56 divlt1lt 12141 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5729, 55, 56syl2anc 580 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5851, 57mpbird 249 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) < 1)
59 0re 10329 . . . . . . 7 0 ∈ ℝ
6010rexri 10386 . . . . . . 7 1 ∈ ℝ*
6159, 60pm3.2i 463 . . . . . 6 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
62 elico2 12483 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6361, 62mp1i 13 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6440, 50, 58, 63mpbir3and 1443 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ (0[,)1))
65 ico01fl0 12872 . . . 4 ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6664, 65syl 17 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6766oveq1d 6892 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵) = (0 mod 𝐵))
68523ad2ant1 1164 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ+)
69 0mod 12953 . . 3 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
7068, 69syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 mod 𝐵) = 0)
7128, 67, 703eqtrd 2836 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2970   class class class wbr 4842  cfv 6100  (class class class)co 6877  cc 10221  cr 10222  0cc0 10223  1c1 10224   + caddc 10226  +∞cpnf 10359  *cxr 10361   < clt 10362  cle 10363   / cdiv 10975  cn 11311  2c2 11365  0cn0 11577  cz 11663  cuz 11927  +crp 12071  [,)cico 12423  cfl 12843   mod cmo 12920  cexp 13111   logb clogb 24843  digitcdig 43177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-inf2 8787  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301  ax-addf 10302  ax-mulf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-iin 4712  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-isom 6109  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7400  df-2nd 7401  df-supp 7532  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-2o 7799  df-oadd 7802  df-er 7981  df-map 8096  df-pm 8097  df-ixp 8148  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-fsupp 8517  df-fi 8558  df-sup 8589  df-inf 8590  df-oi 8656  df-card 9050  df-cda 9277  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-z 11664  df-dec 11781  df-uz 11928  df-q 12031  df-rp 12072  df-xneg 12190  df-xadd 12191  df-xmul 12192  df-ioo 12425  df-ioc 12426  df-ico 12427  df-icc 12428  df-fz 12578  df-fzo 12718  df-fl 12845  df-mod 12921  df-seq 13053  df-exp 13112  df-fac 13311  df-bc 13340  df-hash 13368  df-shft 14145  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-limsup 14540  df-clim 14557  df-rlim 14558  df-sum 14755  df-ef 15131  df-sin 15133  df-cos 15134  df-pi 15136  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-mulg 17854  df-cntz 18059  df-cmn 18507  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-fbas 20062  df-fg 20063  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-nei 21228  df-lp 21266  df-perf 21267  df-cn 21357  df-cnp 21358  df-haus 21445  df-tx 21691  df-hmeo 21884  df-fil 21975  df-fm 22067  df-flim 22068  df-flf 22069  df-xms 22450  df-ms 22451  df-tms 22452  df-cncf 23006  df-limc 23968  df-dv 23969  df-log 24641  df-cxp 24642  df-logb 24844  df-dig 43178
This theorem is referenced by:  dig2nn0ld  43186
  Copyright terms: Public domain W3C validator