Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignnld Structured version   Visualization version   GIF version

Theorem dignnld 45017
Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020.)
Assertion
Ref Expression
dignnld ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)

Proof of Theorem dignnld
StepHypRef Expression
1 eluz2nn 12272 . . . 4 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
213ad2ant1 1130 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℕ)
3 nnrp 12388 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
43anim2i 619 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+))
5 relogbzcl 25360 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (𝐵 logb 𝑁) ∈ ℝ)
64, 5syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 logb 𝑁) ∈ ℝ)
7 nnre 11632 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnge1 11653 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
97, 8jca 515 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
10 1re 10630 . . . . . . . . . 10 1 ∈ ℝ
11 elicopnf 12823 . . . . . . . . . 10 (1 ∈ ℝ → (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁)))
1210, 11ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (1[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 1 ≤ 𝑁))
139, 12sylibr 237 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (1[,)+∞))
1413anim2i 619 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)))
15 rege1logbzge0 44973 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑁))
1614, 15syl 17 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐵 logb 𝑁))
176, 16jca 515 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)))
18 flge0nn0 13185 . . . . 5 (((𝐵 logb 𝑁) ∈ ℝ ∧ 0 ≤ (𝐵 logb 𝑁)) → (⌊‘(𝐵 logb 𝑁)) ∈ ℕ0)
19 peano2nn0 11925 . . . . 5 ((⌊‘(𝐵 logb 𝑁)) ∈ ℕ0 → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
2017, 18, 193syl 18 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0)
21 eluznn0 12305 . . . 4 ((((⌊‘(𝐵 logb 𝑁)) + 1) ∈ ℕ0𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
2220, 21stoic3 1778 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℕ0)
23 nnnn0 11892 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
24 nn0rp0 12833 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0[,)+∞))
2523, 24syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
26253ad2ant2 1131 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ (0[,)+∞))
27 nn0digval 45014 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
282, 22, 26, 27syl3anc 1368 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵))
2973ad2ant2 1131 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 ∈ ℝ)
30 eluzelre 12242 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
31303ad2ant1 1130 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ)
32 eluz2n0 12276 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
33323ad2ant1 1130 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ≠ 0)
34 eluzelz 12241 . . . . . . . 8 (𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1)) → 𝐾 ∈ ℤ)
35343ad2ant3 1132 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐾 ∈ ℤ)
3631, 33, 35reexpclzd 13606 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ)
37 eluzelcn 12243 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
38373ad2ant1 1130 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℂ)
3938, 33, 35expne0d 13512 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ≠ 0)
4029, 36, 39redivcld 11457 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ ℝ)
41 nn0ge0 11910 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
4223, 41syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
43423ad2ant2 1131 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ 𝑁)
441nngt0d 11674 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 0 < 𝐵)
45443ad2ant1 1130 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < 𝐵)
46 expgt0 13458 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐾 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝐾))
4731, 35, 45, 46syl3anc 1368 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 < (𝐵𝐾))
48 ge0div 11496 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ ∧ 0 < (𝐵𝐾)) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
4929, 36, 47, 48syl3anc 1368 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 ≤ 𝑁 ↔ 0 ≤ (𝑁 / (𝐵𝐾))))
5043, 49mpbid 235 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 0 ≤ (𝑁 / (𝐵𝐾)))
51 dignn0ldlem 45016 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝑁 < (𝐵𝐾))
521nnrpd 12417 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
53 rpexpcl 13444 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝐾 ∈ ℤ) → (𝐵𝐾) ∈ ℝ+)
5452, 34, 53syl2an 598 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
55543adant2 1128 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐵𝐾) ∈ ℝ+)
56 divlt1lt 12446 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ+) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5729, 55, 56syl2anc 587 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) < 1 ↔ 𝑁 < (𝐵𝐾)))
5851, 57mpbird 260 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) < 1)
59 0re 10632 . . . . . . 7 0 ∈ ℝ
60 1xr 10689 . . . . . . 7 1 ∈ ℝ*
6159, 60pm3.2i 474 . . . . . 6 (0 ∈ ℝ ∧ 1 ∈ ℝ*)
62 elico2 12789 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6361, 62mp1i 13 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) ↔ ((𝑁 / (𝐵𝐾)) ∈ ℝ ∧ 0 ≤ (𝑁 / (𝐵𝐾)) ∧ (𝑁 / (𝐵𝐾)) < 1)))
6440, 50, 58, 63mpbir3and 1339 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝑁 / (𝐵𝐾)) ∈ (0[,)1))
65 ico01fl0 13184 . . . 4 ((𝑁 / (𝐵𝐾)) ∈ (0[,)1) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6664, 65syl 17 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (⌊‘(𝑁 / (𝐵𝐾))) = 0)
6766oveq1d 7150 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → ((⌊‘(𝑁 / (𝐵𝐾))) mod 𝐵) = (0 mod 𝐵))
68523ad2ant1 1130 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → 𝐵 ∈ ℝ+)
69 0mod 13265 . . 3 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
7068, 69syl 17 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (0 mod 𝐵) = 0)
7128, 67, 703eqtrd 2837 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘((⌊‘(𝐵 logb 𝑁)) + 1))) → (𝐾(digit‘𝐵)𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  [,)cico 12728  cfl 13155   mod cmo 13232  cexp 13425   logb clogb 25350  digitcdig 45009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-logb 25351  df-dig 45010
This theorem is referenced by:  dig2nn0ld  45018
  Copyright terms: Public domain W3C validator