MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1term Structured version   Visualization version   GIF version

Theorem ply1term 24790
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1term ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁   𝑧,𝑆
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem ply1term
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3946 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → 𝐴 ∈ ℂ)
2 ply1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1termlem 24789 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
41, 3stoic3 1778 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
5 simp1 1133 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ)
6 0cnd 10619 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 0 ∈ ℂ)
76snssd 4723 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → {0} ⊆ ℂ)
85, 7unssd 4146 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
9 simp3 1135 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 simpl2 1189 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
11 elun1 4136 . . . . . 6 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
1210, 11syl 17 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
13 ssun2 4133 . . . . . 6 {0} ⊆ (𝑆 ∪ {0})
14 c0ex 10620 . . . . . . 7 0 ∈ V
1514snss 4699 . . . . . 6 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1613, 15mpbir 234 . . . . 5 0 ∈ (𝑆 ∪ {0})
17 ifcl 4492 . . . . 5 ((𝐴 ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
1812, 16, 17sylancl 589 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
198, 9, 18elplyd 24788 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
204, 19eqeltrd 2916 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
21 plyun0 24783 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
2220, 21eleqtrdi 2926 1 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cun 3916  wss 3918  ifcif 4448  {csn 4548  cmpt 5127  cfv 6336  (class class class)co 7138  cc 10520  0cc0 10522   · cmul 10527  0cn0 11883  ...cfz 12883  cexp 13423  Σcsu 15031  Polycply 24770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-fz 12884  df-fzo 13027  df-seq 13363  df-exp 13424  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-clim 14834  df-sum 15032  df-ply 24774
This theorem is referenced by:  plypow  24791  plyconst  24792  coe1termlem  24844  dgrcolem2  24860  plydivlem4  24881
  Copyright terms: Public domain W3C validator