MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1term Structured version   Visualization version   GIF version

Theorem ply1term 26146
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1term ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁   𝑧,𝑆
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem ply1term
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3951 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → 𝐴 ∈ ℂ)
2 ply1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1termlem 26145 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
41, 3stoic3 1775 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
5 simp1 1136 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ)
6 0cnd 11220 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 0 ∈ ℂ)
76snssd 4782 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → {0} ⊆ ℂ)
85, 7unssd 4165 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
9 simp3 1138 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 simpl2 1192 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
11 elun1 4155 . . . . . 6 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
1210, 11syl 17 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
13 ssun2 4152 . . . . . 6 {0} ⊆ (𝑆 ∪ {0})
14 c0ex 11221 . . . . . . 7 0 ∈ V
1514snss 4758 . . . . . 6 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1613, 15mpbir 231 . . . . 5 0 ∈ (𝑆 ∪ {0})
17 ifcl 4544 . . . . 5 ((𝐴 ∈ (𝑆 ∪ {0}) ∧ 0 ∈ (𝑆 ∪ {0})) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
1812, 16, 17sylancl 586 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
198, 9, 18elplyd 26144 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
204, 19eqeltrd 2833 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
21 plyun0 26139 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
2220, 21eleqtrdi 2843 1 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cun 3922  wss 3924  ifcif 4498  {csn 4599  cmpt 5198  cfv 6527  (class class class)co 7399  cc 11119  0cc0 11121   · cmul 11126  0cn0 12493  ...cfz 13513  cexp 14068  Σcsu 15689  Polycply 26126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-fzo 13661  df-seq 14009  df-exp 14069  df-hash 14337  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-clim 15491  df-sum 15690  df-ply 26130
This theorem is referenced by:  plypow  26147  plyconst  26148  coe1termlem  26200  dgrcolem2  26217  plydivlem4  26241
  Copyright terms: Public domain W3C validator