MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subadd2i Structured version   Visualization version   GIF version

Theorem subadd2i 10572
Description: Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
Assertion
Ref Expression
subadd2i ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)

Proof of Theorem subadd2i
StepHypRef Expression
1 negidi.1 . 2 𝐴 ∈ ℂ
2 pncan3i.2 . 2 𝐵 ∈ ℂ
3 subadd.3 . 2 𝐶 ∈ ℂ
4 subadd2 10488 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴))
51, 2, 3, 4mp3an 1572 1 ((𝐴𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1631  wcel 2145  (class class class)co 6794  cc 10137   + caddc 10142  cmin 10469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-ltxr 10282  df-sub 10471
This theorem is referenced by:  ixi  10859  nummac  11760  cos1bnd  15124  cos2bnd  15125  pockthi  15819  mod2xnegi  15983  modsubi  15984  prmo4  16043  prmo5  16044  prmo6  16045  sincos6thpi  24489  problem4  31901  quad3  31903  m3prm  42035  m7prm  42045  evengpop3  42215
  Copyright terms: Public domain W3C validator