| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version | ||
| Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| modsubi.1 | ⊢ 𝑁 ∈ ℕ |
| modsubi.2 | ⊢ 𝐴 ∈ ℕ |
| modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
| modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
| modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
| modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
| Ref | Expression |
|---|---|
| modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnrei 12202 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
| 4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 4, 5 | nn0addcli 12486 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
| 7 | 6 | nn0rei 12460 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
| 8 | 3, 7 | eqeltrri 2826 | . . . 4 ⊢ 𝐾 ∈ ℝ |
| 9 | 2, 8 | pm3.2i 470 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
| 10 | 5 | nn0rei 12460 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 11 | 10 | renegcli 11490 | . . . 4 ⊢ -𝐵 ∈ ℝ |
| 12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 13 | nnrp 12970 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
| 15 | 11, 14 | pm3.2i 470 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
| 16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
| 17 | modadd1 13877 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
| 18 | 9, 15, 16, 17 | mp3an 1463 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
| 19 | 1 | nncni 12203 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 20 | 5 | nn0cni 12461 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 21 | 19, 20 | negsubi 11507 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
| 22 | 21 | oveq1i 7400 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
| 23 | 8 | recni 11195 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
| 24 | 23, 20 | negsubi 11507 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
| 25 | 4 | nn0cni 12461 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 26 | 23, 20, 25 | subadd2i 11517 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
| 27 | 3, 26 | mpbir 231 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
| 28 | 24, 27 | eqtri 2753 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
| 29 | 28 | oveq1i 7400 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| 30 | 18, 22, 29 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 + caddc 11078 − cmin 11412 -cneg 11413 ℕcn 12193 ℕ0cn0 12449 ℝ+crp 12958 mod cmo 13838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-mod 13839 |
| This theorem is referenced by: 1259lem5 17112 2503lem3 17116 4001lem4 17121 |
| Copyright terms: Public domain | W3C validator |