MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubi Structured version   Visualization version   GIF version

Theorem modsubi 16986
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1 𝑁 ∈ ℕ
modsubi.2 𝐴 ∈ ℕ
modsubi.3 𝐵 ∈ ℕ0
modsubi.4 𝑀 ∈ ℕ0
modsubi.6 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
modsubi.5 (𝑀 + 𝐵) = 𝐾
Assertion
Ref Expression
modsubi ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5 𝐴 ∈ ℕ
21nnrei 12141 . . . 4 𝐴 ∈ ℝ
3 modsubi.5 . . . . 5 (𝑀 + 𝐵) = 𝐾
4 modsubi.4 . . . . . . 7 𝑀 ∈ ℕ0
5 modsubi.3 . . . . . . 7 𝐵 ∈ ℕ0
64, 5nn0addcli 12425 . . . . . 6 (𝑀 + 𝐵) ∈ ℕ0
76nn0rei 12399 . . . . 5 (𝑀 + 𝐵) ∈ ℝ
83, 7eqeltrri 2830 . . . 4 𝐾 ∈ ℝ
92, 8pm3.2i 470 . . 3 (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ)
105nn0rei 12399 . . . . 5 𝐵 ∈ ℝ
1110renegcli 11429 . . . 4 -𝐵 ∈ ℝ
12 modsubi.1 . . . . 5 𝑁 ∈ ℕ
13 nnrp 12904 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1412, 13ax-mp 5 . . . 4 𝑁 ∈ ℝ+
1511, 14pm3.2i 470 . . 3 (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
16 modsubi.6 . . 3 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
17 modadd1 13814 . . 3 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁))
189, 15, 16, 17mp3an 1463 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)
191nncni 12142 . . . 4 𝐴 ∈ ℂ
205nn0cni 12400 . . . 4 𝐵 ∈ ℂ
2119, 20negsubi 11446 . . 3 (𝐴 + -𝐵) = (𝐴𝐵)
2221oveq1i 7362 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁)
238recni 11133 . . . . 5 𝐾 ∈ ℂ
2423, 20negsubi 11446 . . . 4 (𝐾 + -𝐵) = (𝐾𝐵)
254nn0cni 12400 . . . . . 6 𝑀 ∈ ℂ
2623, 20, 25subadd2i 11456 . . . . 5 ((𝐾𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾)
273, 26mpbir 231 . . . 4 (𝐾𝐵) = 𝑀
2824, 27eqtri 2756 . . 3 (𝐾 + -𝐵) = 𝑀
2928oveq1i 7362 . 2 ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁)
3018, 22, 293eqtr3i 2764 1 ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  (class class class)co 7352  cr 11012   + caddc 11016  cmin 11351  -cneg 11352  cn 12132  0cn0 12388  +crp 12892   mod cmo 13775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-mod 13776
This theorem is referenced by:  1259lem5  17048  2503lem3  17052  4001lem4  17057
  Copyright terms: Public domain W3C validator