| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version | ||
| Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| modsubi.1 | ⊢ 𝑁 ∈ ℕ |
| modsubi.2 | ⊢ 𝐴 ∈ ℕ |
| modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
| modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
| modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
| modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
| Ref | Expression |
|---|---|
| modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 2 | 1 | nnrei 12155 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
| 4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 4, 5 | nn0addcli 12439 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
| 7 | 6 | nn0rei 12413 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
| 8 | 3, 7 | eqeltrri 2825 | . . . 4 ⊢ 𝐾 ∈ ℝ |
| 9 | 2, 8 | pm3.2i 470 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
| 10 | 5 | nn0rei 12413 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
| 11 | 10 | renegcli 11443 | . . . 4 ⊢ -𝐵 ∈ ℝ |
| 12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 13 | nnrp 12923 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
| 15 | 11, 14 | pm3.2i 470 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
| 16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
| 17 | modadd1 13830 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
| 18 | 9, 15, 16, 17 | mp3an 1463 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
| 19 | 1 | nncni 12156 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 20 | 5 | nn0cni 12414 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 21 | 19, 20 | negsubi 11460 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
| 22 | 21 | oveq1i 7363 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
| 23 | 8 | recni 11148 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
| 24 | 23, 20 | negsubi 11460 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
| 25 | 4 | nn0cni 12414 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 26 | 23, 20, 25 | subadd2i 11470 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
| 27 | 3, 26 | mpbir 231 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
| 28 | 24, 27 | eqtri 2752 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
| 29 | 28 | oveq1i 7363 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| 30 | 18, 22, 29 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℝcr 11027 + caddc 11031 − cmin 11365 -cneg 11366 ℕcn 12146 ℕ0cn0 12402 ℝ+crp 12911 mod cmo 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-mod 13792 |
| This theorem is referenced by: 1259lem5 17064 2503lem3 17068 4001lem4 17073 |
| Copyright terms: Public domain | W3C validator |