Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version |
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
modsubi.1 | ⊢ 𝑁 ∈ ℕ |
modsubi.2 | ⊢ 𝐴 ∈ ℕ |
modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
Ref | Expression |
---|---|
modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nnrei 12075 | . . . 4 ⊢ 𝐴 ∈ ℝ |
3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
6 | 4, 5 | nn0addcli 12363 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
7 | 6 | nn0rei 12337 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
8 | 3, 7 | eqeltrri 2834 | . . . 4 ⊢ 𝐾 ∈ ℝ |
9 | 2, 8 | pm3.2i 471 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
10 | 5 | nn0rei 12337 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
11 | 10 | renegcli 11375 | . . . 4 ⊢ -𝐵 ∈ ℝ |
12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
13 | nnrp 12834 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
15 | 11, 14 | pm3.2i 471 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
17 | modadd1 13721 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
18 | 9, 15, 16, 17 | mp3an 1460 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
19 | 1 | nncni 12076 | . . . 4 ⊢ 𝐴 ∈ ℂ |
20 | 5 | nn0cni 12338 | . . . 4 ⊢ 𝐵 ∈ ℂ |
21 | 19, 20 | negsubi 11392 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
22 | 21 | oveq1i 7339 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
23 | 8 | recni 11082 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
24 | 23, 20 | negsubi 11392 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
25 | 4 | nn0cni 12338 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
26 | 23, 20, 25 | subadd2i 11402 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
27 | 3, 26 | mpbir 230 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
28 | 24, 27 | eqtri 2764 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
29 | 28 | oveq1i 7339 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
30 | 18, 22, 29 | 3eqtr3i 2772 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℝcr 10963 + caddc 10967 − cmin 11298 -cneg 11299 ℕcn 12066 ℕ0cn0 12326 ℝ+crp 12823 mod cmo 13682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fl 13605 df-mod 13683 |
This theorem is referenced by: 1259lem5 16925 2503lem3 16929 4001lem4 16934 |
Copyright terms: Public domain | W3C validator |