MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubi Structured version   Visualization version   GIF version

Theorem modsubi 16951
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1 𝑁 ∈ ℕ
modsubi.2 𝐴 ∈ ℕ
modsubi.3 𝐵 ∈ ℕ0
modsubi.4 𝑀 ∈ ℕ0
modsubi.6 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
modsubi.5 (𝑀 + 𝐵) = 𝐾
Assertion
Ref Expression
modsubi ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5 𝐴 ∈ ℕ
21nnrei 12169 . . . 4 𝐴 ∈ ℝ
3 modsubi.5 . . . . 5 (𝑀 + 𝐵) = 𝐾
4 modsubi.4 . . . . . . 7 𝑀 ∈ ℕ0
5 modsubi.3 . . . . . . 7 𝐵 ∈ ℕ0
64, 5nn0addcli 12457 . . . . . 6 (𝑀 + 𝐵) ∈ ℕ0
76nn0rei 12431 . . . . 5 (𝑀 + 𝐵) ∈ ℝ
83, 7eqeltrri 2835 . . . 4 𝐾 ∈ ℝ
92, 8pm3.2i 472 . . 3 (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ)
105nn0rei 12431 . . . . 5 𝐵 ∈ ℝ
1110renegcli 11469 . . . 4 -𝐵 ∈ ℝ
12 modsubi.1 . . . . 5 𝑁 ∈ ℕ
13 nnrp 12933 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1412, 13ax-mp 5 . . . 4 𝑁 ∈ ℝ+
1511, 14pm3.2i 472 . . 3 (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
16 modsubi.6 . . 3 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
17 modadd1 13820 . . 3 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁))
189, 15, 16, 17mp3an 1462 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)
191nncni 12170 . . . 4 𝐴 ∈ ℂ
205nn0cni 12432 . . . 4 𝐵 ∈ ℂ
2119, 20negsubi 11486 . . 3 (𝐴 + -𝐵) = (𝐴𝐵)
2221oveq1i 7372 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁)
238recni 11176 . . . . 5 𝐾 ∈ ℂ
2423, 20negsubi 11486 . . . 4 (𝐾 + -𝐵) = (𝐾𝐵)
254nn0cni 12432 . . . . . 6 𝑀 ∈ ℂ
2623, 20, 25subadd2i 11496 . . . . 5 ((𝐾𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾)
273, 26mpbir 230 . . . 4 (𝐾𝐵) = 𝑀
2824, 27eqtri 2765 . . 3 (𝐾 + -𝐵) = 𝑀
2928oveq1i 7372 . 2 ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁)
3018, 22, 293eqtr3i 2773 1 ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  (class class class)co 7362  cr 11057   + caddc 11061  cmin 11392  -cneg 11393  cn 12160  0cn0 12420  +crp 12922   mod cmo 13781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fl 13704  df-mod 13782
This theorem is referenced by:  1259lem5  17014  2503lem3  17018  4001lem4  17023
  Copyright terms: Public domain W3C validator