![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version |
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
modsubi.1 | ⊢ 𝑁 ∈ ℕ |
modsubi.2 | ⊢ 𝐴 ∈ ℕ |
modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
Ref | Expression |
---|---|
modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nnrei 12220 | . . . 4 ⊢ 𝐴 ∈ ℝ |
3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
6 | 4, 5 | nn0addcli 12508 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
7 | 6 | nn0rei 12482 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
8 | 3, 7 | eqeltrri 2830 | . . . 4 ⊢ 𝐾 ∈ ℝ |
9 | 2, 8 | pm3.2i 471 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
10 | 5 | nn0rei 12482 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
11 | 10 | renegcli 11520 | . . . 4 ⊢ -𝐵 ∈ ℝ |
12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
13 | nnrp 12984 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
15 | 11, 14 | pm3.2i 471 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
17 | modadd1 13872 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
18 | 9, 15, 16, 17 | mp3an 1461 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
19 | 1 | nncni 12221 | . . . 4 ⊢ 𝐴 ∈ ℂ |
20 | 5 | nn0cni 12483 | . . . 4 ⊢ 𝐵 ∈ ℂ |
21 | 19, 20 | negsubi 11537 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
22 | 21 | oveq1i 7418 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
23 | 8 | recni 11227 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
24 | 23, 20 | negsubi 11537 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
25 | 4 | nn0cni 12483 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
26 | 23, 20, 25 | subadd2i 11547 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
27 | 3, 26 | mpbir 230 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
28 | 24, 27 | eqtri 2760 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
29 | 28 | oveq1i 7418 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
30 | 18, 22, 29 | 3eqtr3i 2768 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 ℝcr 11108 + caddc 11112 − cmin 11443 -cneg 11444 ℕcn 12211 ℕ0cn0 12471 ℝ+crp 12973 mod cmo 13833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fl 13756 df-mod 13834 |
This theorem is referenced by: 1259lem5 17067 2503lem3 17071 4001lem4 17076 |
Copyright terms: Public domain | W3C validator |