MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubi Structured version   Visualization version   GIF version

Theorem modsubi 17069
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1 𝑁 ∈ ℕ
modsubi.2 𝐴 ∈ ℕ
modsubi.3 𝐵 ∈ ℕ0
modsubi.4 𝑀 ∈ ℕ0
modsubi.6 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
modsubi.5 (𝑀 + 𝐵) = 𝐾
Assertion
Ref Expression
modsubi ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5 𝐴 ∈ ℕ
21nnrei 12267 . . . 4 𝐴 ∈ ℝ
3 modsubi.5 . . . . 5 (𝑀 + 𝐵) = 𝐾
4 modsubi.4 . . . . . . 7 𝑀 ∈ ℕ0
5 modsubi.3 . . . . . . 7 𝐵 ∈ ℕ0
64, 5nn0addcli 12555 . . . . . 6 (𝑀 + 𝐵) ∈ ℕ0
76nn0rei 12529 . . . . 5 (𝑀 + 𝐵) ∈ ℝ
83, 7eqeltrri 2823 . . . 4 𝐾 ∈ ℝ
92, 8pm3.2i 469 . . 3 (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ)
105nn0rei 12529 . . . . 5 𝐵 ∈ ℝ
1110renegcli 11562 . . . 4 -𝐵 ∈ ℝ
12 modsubi.1 . . . . 5 𝑁 ∈ ℕ
13 nnrp 13033 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1412, 13ax-mp 5 . . . 4 𝑁 ∈ ℝ+
1511, 14pm3.2i 469 . . 3 (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
16 modsubi.6 . . 3 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
17 modadd1 13922 . . 3 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁))
189, 15, 16, 17mp3an 1458 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)
191nncni 12268 . . . 4 𝐴 ∈ ℂ
205nn0cni 12530 . . . 4 𝐵 ∈ ℂ
2119, 20negsubi 11579 . . 3 (𝐴 + -𝐵) = (𝐴𝐵)
2221oveq1i 7426 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁)
238recni 11269 . . . . 5 𝐾 ∈ ℂ
2423, 20negsubi 11579 . . . 4 (𝐾 + -𝐵) = (𝐾𝐵)
254nn0cni 12530 . . . . . 6 𝑀 ∈ ℂ
2623, 20, 25subadd2i 11589 . . . . 5 ((𝐾𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾)
273, 26mpbir 230 . . . 4 (𝐾𝐵) = 𝑀
2824, 27eqtri 2754 . . 3 (𝐾 + -𝐵) = 𝑀
2928oveq1i 7426 . 2 ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁)
3018, 22, 293eqtr3i 2762 1 ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  (class class class)co 7416  cr 11148   + caddc 11152  cmin 11485  -cneg 11486  cn 12258  0cn0 12518  +crp 13022   mod cmo 13883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fl 13806  df-mod 13884
This theorem is referenced by:  1259lem5  17132  2503lem3  17136  4001lem4  17141
  Copyright terms: Public domain W3C validator