MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modsubi Structured version   Visualization version   GIF version

Theorem modsubi 17119
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
modsubi.1 𝑁 ∈ ℕ
modsubi.2 𝐴 ∈ ℕ
modsubi.3 𝐵 ∈ ℕ0
modsubi.4 𝑀 ∈ ℕ0
modsubi.6 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
modsubi.5 (𝑀 + 𝐵) = 𝐾
Assertion
Ref Expression
modsubi ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem modsubi
StepHypRef Expression
1 modsubi.2 . . . . 5 𝐴 ∈ ℕ
21nnrei 12302 . . . 4 𝐴 ∈ ℝ
3 modsubi.5 . . . . 5 (𝑀 + 𝐵) = 𝐾
4 modsubi.4 . . . . . . 7 𝑀 ∈ ℕ0
5 modsubi.3 . . . . . . 7 𝐵 ∈ ℕ0
64, 5nn0addcli 12590 . . . . . 6 (𝑀 + 𝐵) ∈ ℕ0
76nn0rei 12564 . . . . 5 (𝑀 + 𝐵) ∈ ℝ
83, 7eqeltrri 2841 . . . 4 𝐾 ∈ ℝ
92, 8pm3.2i 470 . . 3 (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ)
105nn0rei 12564 . . . . 5 𝐵 ∈ ℝ
1110renegcli 11597 . . . 4 -𝐵 ∈ ℝ
12 modsubi.1 . . . . 5 𝑁 ∈ ℕ
13 nnrp 13068 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
1412, 13ax-mp 5 . . . 4 𝑁 ∈ ℝ+
1511, 14pm3.2i 470 . . 3 (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
16 modsubi.6 . . 3 (𝐴 mod 𝑁) = (𝐾 mod 𝑁)
17 modadd1 13959 . . 3 (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁))
189, 15, 16, 17mp3an 1461 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)
191nncni 12303 . . . 4 𝐴 ∈ ℂ
205nn0cni 12565 . . . 4 𝐵 ∈ ℂ
2119, 20negsubi 11614 . . 3 (𝐴 + -𝐵) = (𝐴𝐵)
2221oveq1i 7458 . 2 ((𝐴 + -𝐵) mod 𝑁) = ((𝐴𝐵) mod 𝑁)
238recni 11304 . . . . 5 𝐾 ∈ ℂ
2423, 20negsubi 11614 . . . 4 (𝐾 + -𝐵) = (𝐾𝐵)
254nn0cni 12565 . . . . . 6 𝑀 ∈ ℂ
2623, 20, 25subadd2i 11624 . . . . 5 ((𝐾𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾)
273, 26mpbir 231 . . . 4 (𝐾𝐵) = 𝑀
2824, 27eqtri 2768 . . 3 (𝐾 + -𝐵) = 𝑀
2928oveq1i 7458 . 2 ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁)
3018, 22, 293eqtr3i 2776 1 ((𝐴𝐵) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cr 11183   + caddc 11187  cmin 11520  -cneg 11521  cn 12293  0cn0 12553  +crp 13057   mod cmo 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921
This theorem is referenced by:  1259lem5  17182  2503lem3  17186  4001lem4  17191
  Copyright terms: Public domain W3C validator