Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version |
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
modsubi.1 | ⊢ 𝑁 ∈ ℕ |
modsubi.2 | ⊢ 𝐴 ∈ ℕ |
modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
Ref | Expression |
---|---|
modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nnrei 11912 | . . . 4 ⊢ 𝐴 ∈ ℝ |
3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
6 | 4, 5 | nn0addcli 12200 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
7 | 6 | nn0rei 12174 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
8 | 3, 7 | eqeltrri 2836 | . . . 4 ⊢ 𝐾 ∈ ℝ |
9 | 2, 8 | pm3.2i 470 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
10 | 5 | nn0rei 12174 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
11 | 10 | renegcli 11212 | . . . 4 ⊢ -𝐵 ∈ ℝ |
12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
13 | nnrp 12670 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
15 | 11, 14 | pm3.2i 470 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
17 | modadd1 13556 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
18 | 9, 15, 16, 17 | mp3an 1459 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
19 | 1 | nncni 11913 | . . . 4 ⊢ 𝐴 ∈ ℂ |
20 | 5 | nn0cni 12175 | . . . 4 ⊢ 𝐵 ∈ ℂ |
21 | 19, 20 | negsubi 11229 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
22 | 21 | oveq1i 7265 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
23 | 8 | recni 10920 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
24 | 23, 20 | negsubi 11229 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
25 | 4 | nn0cni 12175 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
26 | 23, 20, 25 | subadd2i 11239 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
27 | 3, 26 | mpbir 230 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
28 | 24, 27 | eqtri 2766 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
29 | 28 | oveq1i 7265 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
30 | 18, 22, 29 | 3eqtr3i 2774 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 + caddc 10805 − cmin 11135 -cneg 11136 ℕcn 11903 ℕ0cn0 12163 ℝ+crp 12659 mod cmo 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 |
This theorem is referenced by: 1259lem5 16764 2503lem3 16768 4001lem4 16773 |
Copyright terms: Public domain | W3C validator |