![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modsubi | Structured version Visualization version GIF version |
Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
modsubi.1 | ⊢ 𝑁 ∈ ℕ |
modsubi.2 | ⊢ 𝐴 ∈ ℕ |
modsubi.3 | ⊢ 𝐵 ∈ ℕ0 |
modsubi.4 | ⊢ 𝑀 ∈ ℕ0 |
modsubi.6 | ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) |
modsubi.5 | ⊢ (𝑀 + 𝐵) = 𝐾 |
Ref | Expression |
---|---|
modsubi | ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modsubi.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
2 | 1 | nnrei 12273 | . . . 4 ⊢ 𝐴 ∈ ℝ |
3 | modsubi.5 | . . . . 5 ⊢ (𝑀 + 𝐵) = 𝐾 | |
4 | modsubi.4 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
5 | modsubi.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
6 | 4, 5 | nn0addcli 12561 | . . . . . 6 ⊢ (𝑀 + 𝐵) ∈ ℕ0 |
7 | 6 | nn0rei 12535 | . . . . 5 ⊢ (𝑀 + 𝐵) ∈ ℝ |
8 | 3, 7 | eqeltrri 2836 | . . . 4 ⊢ 𝐾 ∈ ℝ |
9 | 2, 8 | pm3.2i 470 | . . 3 ⊢ (𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) |
10 | 5 | nn0rei 12535 | . . . . 5 ⊢ 𝐵 ∈ ℝ |
11 | 10 | renegcli 11568 | . . . 4 ⊢ -𝐵 ∈ ℝ |
12 | modsubi.1 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
13 | nnrp 13044 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℝ+ |
15 | 11, 14 | pm3.2i 470 | . . 3 ⊢ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) |
16 | modsubi.6 | . . 3 ⊢ (𝐴 mod 𝑁) = (𝐾 mod 𝑁) | |
17 | modadd1 13945 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (-𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (𝐴 mod 𝑁) = (𝐾 mod 𝑁)) → ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁)) | |
18 | 9, 15, 16, 17 | mp3an 1460 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐾 + -𝐵) mod 𝑁) |
19 | 1 | nncni 12274 | . . . 4 ⊢ 𝐴 ∈ ℂ |
20 | 5 | nn0cni 12536 | . . . 4 ⊢ 𝐵 ∈ ℂ |
21 | 19, 20 | negsubi 11585 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 − 𝐵) |
22 | 21 | oveq1i 7441 | . 2 ⊢ ((𝐴 + -𝐵) mod 𝑁) = ((𝐴 − 𝐵) mod 𝑁) |
23 | 8 | recni 11273 | . . . . 5 ⊢ 𝐾 ∈ ℂ |
24 | 23, 20 | negsubi 11585 | . . . 4 ⊢ (𝐾 + -𝐵) = (𝐾 − 𝐵) |
25 | 4 | nn0cni 12536 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
26 | 23, 20, 25 | subadd2i 11595 | . . . . 5 ⊢ ((𝐾 − 𝐵) = 𝑀 ↔ (𝑀 + 𝐵) = 𝐾) |
27 | 3, 26 | mpbir 231 | . . . 4 ⊢ (𝐾 − 𝐵) = 𝑀 |
28 | 24, 27 | eqtri 2763 | . . 3 ⊢ (𝐾 + -𝐵) = 𝑀 |
29 | 28 | oveq1i 7441 | . 2 ⊢ ((𝐾 + -𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
30 | 18, 22, 29 | 3eqtr3i 2771 | 1 ⊢ ((𝐴 − 𝐵) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 + caddc 11156 − cmin 11490 -cneg 11491 ℕcn 12264 ℕ0cn0 12524 ℝ+crp 13032 mod cmo 13906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fl 13829 df-mod 13907 |
This theorem is referenced by: 1259lem5 17169 2503lem3 17173 4001lem4 17178 |
Copyright terms: Public domain | W3C validator |